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Recent studies have made remarkable progress on 3D human motion prediction by describing motion 

with kinematic knowledge. However, kinematics only considers the 3D positions or rotations of human 

skeletons, failing to reveal the physical characteristics of human motion. Motion dynamics reflects the 

forces between joints, explicitly encoding the skeleton topology, whereas rarely exploited in motion pre- 

diction. In this paper, we propose the K inematic and D ynamic coupled trans Former (KD-Former), which 

incorporates dynamics with kinematics, to learn powerful features for high-fidelity motion prediction. 

Specifically, We first formulate a reduced-order dynamic model of human body to calculate the forces of 

all joints. Then we construct a non-autoregressive encoder-decoder framework based on the transformer 

structure. The encoder involves a kinematic encoder and a dynamic encoder, which are respectively re- 

sponsible for extracting the kinematic and dynamic features for given history sequences via a spatial 

transformer and a temporal transformer. Future query sequences are decoded in parallel in the decoder 

by leveraging the encoded kinematic and dynamic information of history sequences. Experiments on Hu- 

man3.6M and CMU MoCap benchmarks verify the effectiveness and superiority of our method. Code will 

be available at: https://github.com/wslh852/KD-Former.git . 

© 2023 Published by Elsevier Ltd. 
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. Introduction 

3D human motion prediction aims to predict the most possi- 

le future human postures based on past observed motion data. 

he task is a fundamental research topic in the computer com- 

unity. It plays a critical role in a broad spectrum of applica- 

ions, such as human-computer interaction [1] , autonomous vehi- 

les [2] and character animation [3] . Since human behavior is en- 

owed with inherent uncertainty and high complexity, accurately 

redicting high-fidelity human motion is inherently challenging. 

To address the above difficulties, traditional methods such as 

he hidden Markov model [4] and finite Boltzmann machine [5] are 

robability-based models. These models require expert-level prior 

nowledge and may produce non-plausible poses. Due to the pro- 

ressive advances of deep learning in various vision tasks [6] , it has 
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ecome the dominant technology in 3D human motion prediction. 

mong various architectures, recurrent neural networks (RNNs) re- 

eive considerable preference because it is structured to be good at 

apturing video sequence temporal information [7,8] . Those meth- 

ds regard motion prediction as a sequence-to-sequence (seq2seq) 

utoregressive prediction. The results have shown significant ad- 

antages over the convolutional neural networks (CNNs) based 

echnique [9] . However, RNNs-based approaches are highly prone 

o error accumulations, especially when conducting long-term mo- 

ion forecasts. To enhance the RNNs-based performance, several 

tudies attempt to incorporate skeleton structure in the encod- 

ng and decoding via graph convolutional networks (GCNs) [10,11] . 

lthough promising results have been achieved, those methods 

ave suffered by large model parameters and time-consuming 

ingle-step implementation. Since the breakthrough performance 

f transformer in natural language processing [12] , the transformer 

as become the new prevalence in seq2seq tasks [13] . Thanks to 

he global modeling ability of the attention mechanism, the trans- 

ormer demonstrates outstanding performance on motion predic- 

ion [14,15] . Whereas native transformer-based models often use 

n autoregressive strategy to predict the next token based on pre- 
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ious tokens to yield target sequences [12,14] , which can not give 

ull play to the parallel computing ability of neural networks and 

rolong the processing time. 

Nevertheless, existing deep learning-based methods only con- 

ider the kinematic data of isolated skeleton joints as network 

nput, i.e. , joint positions or rotations. These methods neglect 

he high-order interactions between skeleton segments. Although 

CNs can explicitly characterize the topology of the human skele- 

on, the network inputs still focus on kinematic knowledge [10,16] . 

esides kinematics, motion can also be modeled from the perspec- 

ive of the dynamics [17] . In principle, motion dynamics are de- 

ived from kinematic clues based on inverse dynamics with me- 

hanical models [18] . Its acquisition builds upon the human skele- 

on structure, involving the length of skeleton segments and the 

elocity and acceleration of skeleton joints. For the structured hu- 

an skeleton, motion dynamic clues are capable of modeling in- 

eractive effects between joints in hierarchy hinge structure implic- 

tly [19] . Hence, motion dynamics contain expressive higher-order 

nformation. Its powerful representation abilities have been used 

o distinguish different motions that are indistinguishable in the 

inematic space [20] . In this paper, kinematic data denotes joint 

otations, while dynamic data refers to the joint forces. Kinematic 

nd dynamic knowledge are complimentary, characterizing motion 

rom different aspects. However, the physical properties and joint 

orces of motion dynamics are rarely exploited in human motion 

rediction. 

To utilize the complementary characteristics of motion kine- 

atic and dynamic clues, we propose the K inematic and D ynamic 

oupled trans Former (KD-Former) network for 3D human mo- 

ion prediction. To our knowledge, we are the first to introduce 

otion dynamics for motion prediction. To obtain dynamic data, 

e formulate a simplified reduced-order algorithm to calculate 

oint forces. The whole framework is a non-autoregressive seq2seq 

ncoder-decoder framework based on the transformer. Specifically, 

he encoder module involves a kinematic encoder (K-Encoder) and 

 dynamic encoder (D-Encoder), which are respectively responsible 

or extracting strong expressive features of kinematics and dynam- 

cs for given motion sequences. The K-Encoder and D-Encoder are 

onstructed with a spatial transformer and a temporal transformer 

o exploit the spatial context of skeleton joints and the tempo- 

al context of different frames. The decoder module consists of a 

patial transformer and two temporal transformers. The kinematic 

patial transformer is shared for the encoder and decoder, while 

he temporal transformers in the decoder are designed based on 

 cross-attention unit to establish cross-correlation between fu- 

ure frames and history sequences. Our model forecasts 3D hu- 

an motion in a non-autoregressive manner, which can signifi- 

antly enhance training and inferencing time. Experiments on Hu- 

an3.6M [21] and CMU MoCap [22] prove the superiority of KD- 

ormer. 

In summary, our main contributions are listed as follows: 

• We propose a novel non-autoregressive kinematic and dynamic 

coupled transformer network, which is elaborately designed to 

couple motion kinematic and dynamic information for 3D hu- 

man motion prediction. 
• To our knowledge, we are the first to introduce motion dynam- 

ics for human motion prediction. To obtain dynamic data, we 

formulate a simplified reduced-order algorithm of human body, 

which largely enhances the computation efficiency and predic- 

tion errors. 
• Extensive experiments on Human 3.6M and CMU MoCap 

datasets demonstrate the superior performance of incorporat- 

ing dynamics and the rapid reasoning ability of our non- 

autoregressive decoding strategy. 
2 
. Related work 

.1. Human motion prediction 

3D human motion prediction has long been a hot research topic 

n the computer community. Traditional methods use probability 

odels to predict motion, such as hidden Markov model [4] and 

oltzmann model [5] . However, those probabilistic modeling ap- 

roaches have limited prediction accuracy, may generate implausi- 

le results, and require strong expert priors. 

Recently, deep learning has become the prevalent technique. 

mong various architectures, RNNs are the most favored candi- 

ate. Martinez et al. [7] develop a seq2seq architecture with resid- 

al connections for posture prediction. Wang et al. [8] propose the 

osition-velocity RNN (PVRNN) framework, which can simultane- 

usly encode joint rotations and velocities to reinforce feature ca- 

ability. Pavllo et al. [23] design an RNN architecture based on 

uaternions and verify its advantages over exponential maps. Dong 

nd Xu [24] incorporate action class labels into GRU-based predic- 

ion network. Although RNN-based methods can extract expressive 

emporal information, they neglect the skeleton topology and suf- 

er from error accumulation. 

As the human skeleton is intrinsically a naturally connected 

raph with joints as nodes and bones as edges, several endeavors 

esort to graph neural networks (GNNs) to facilitate motion anal- 

sis. For instance, Jain et al. [25] construct spatio-temporal graphs 

ccording to the topology of skeleton sequences for motion pre- 

iction. Mao et al. [26] attempt to learn temporal information via 

iscrete cosine transform and spatial structure with GNNs. Works 

n [10,11] formulate multi-scale GNNs to model the internal rela- 

ions of the human body at different scales. Zhong et al. [27] for- 

ulate the spatio-temporal gating-adjacency GCN(GAGCN) to learn 

omplex spatio-temporal dependencies over diverse action types. 

esides GCNs, extensive efforts exploit the attention mechanism 

or modeling joint corporations within each frame. For instance, 

artínez-González et al. [28] leverage transformer-based encoder- 

ecoder architecture for fast human motion inference in a non- 

utoregressive manner. Nevertheless, existing GCNs or attention- 

ased models describe human postures and movements using 

inematic data, such as joint positions, rotations, and quaternions 

s inputs. In contrast, we introduce motion dynamics to character- 

ze motion, which is capable of implicitly modeling human body 

igh-order structure. 

.2. Motion dynamics applications 

Learning the dynamic information of human motion is essential 

or mechanical research [29] . Motion dynamics has been widely 

pplied in motion control, rehabilitation monitoring, and behav- 

or analysis. For example, Reher and Ames [30] use an inverse 

ynamics approach to control the motion of a walking robot to 

chieve stability conditions for the robot. In the medical field, dy- 

amic data are often regarded as health analysis data, as in [31] , 

here patient dynamic data are analyzed and monitored by cap- 

uring human kinematic data. Zell and Rosenhahn [32] present a 

earning-based inverse dynamic algorithm to analyze human mo- 

ion and use it as a tool to detect abnormal torque distribution in 

ait. Mansur et al. [20] leverage dynamic features derived by ap- 

lying inverse dynamics to the human body for action recognition. 

ur goal is different from the above works. We aim to incorporate 

ynamic data into kinematic data to strengthen the representation 

bility of motion features, so as to benefit motion prediction per- 

ormance. 



J. Dai, H. Li, R. Zeng et al. Pattern Recognition 143 (2023) 109806 

3

3

t

t

e

t

r

t

m

m

F

a

t

t

p

n

c

h

t

p

3

h

N

l

r

b

a

E

o

b

i

s

l  

t

j

t

a

n

i

F  

i

s

m

j

m

w

a

w  

e

r  

t

j

a

w  

t

e

m

w

f  

t

i

f̂

H

m

w  

d

t  

a

3

d

(

a

t

q  

l  

k

a

e

a  

m

a

A  

a

r

M

H  

w

c

M

h

f

s

t

w

f

o

p

M

H  

H  

l

a

f

p

F

w

t

. Methodology 

.1. Overview of the proposed method 

Our purpose is to make use of the complementary informa- 

ion characteristics of motion kinematics and dynamics for predic- 

ion performance improvements. Since existing datasets are only 

ndowed with kinematic data, such as joint positions or rota- 

ions, we first need to obtain the dynamic data. Inspired by the 

educed-order dynamic mode in super-tall complex building struc- 

ures [33] , we present a simplified reduced-order algorithm of hu- 

an body to obtain dynamic clues of skeleton joints. Then, we for- 

ulate the K inematics and D ynamics coupled trans Former (KD- 

ormer) network to leverage the benefits of motion kinematic 

nd dynamic. Our KD-Former is a seq2seq architecture based on 

he transformer. Unlike the conventional autoregressive decoder of 

ransformer networks in natural language processing [12] , the pro- 

osed KD-Former possesses a non-autoregressive decoding man- 

er, which can significantly speed up the training and testing pro- 

ess. 

Before going into the details of the method, we first describe 

ow the dynamic data are obtained. Then we introduce the essen- 

ial components of the transformer. At last, we elaborate on the 

roposed KD-Former model. 

.2. Dynamics calculation 

The dynamic computation requires the mass of each part of the 

uman body and its motion information. It is normally solved by 

ewton Euler (N-E) equation, where the Newton equation calcu- 

ates the translation process, and the Euler equation calculates the 

otation process [19] . In traditional mechanical models, a human 

ody is usually modeled as a rigid body, where the inertia tensor 

nd mass are needed to be solved and later brought into the N- 

 equation to obtain dynamic data [19] . However, in the process 

f human body modeling, complex and delicate modeling often 

rings a significant computational overhead. In structural engineer- 

ng, to analyze the stresses of a complex structure, the complex 

tructure is simplified into a reduced-order dynamic model simi- 

ar to “sugar gourd string” [33] . Inspired by Niu et al. [33] , we es-

ablish a reduced-order model of the human skeleton, where each 

oint is regarded as a mass point, and a bone mass is condensed 

o the connected joints. Note that our dataset has no ground re- 

ction forces (GRF), so we make a simplifying assumption and do 

ot consider GRF. Only the gravity force, internal joint forces, and 

nertia forces are considered in the motion equation. As shown in 

ig. 2 , we divide the human body into five parts, each of which

s considered a hinge structure. Assuming that the sectional den- 

ity between two connected joints is uniformly distributed, a joint 

ass is proportional to the 3D distance between two joints. The 

oint mass m k, j of joint j in part k can be defined as: 

 k, j = 

√ 

(x k, j − x k, j+1 ) 2 ∑ 5 
k =1 

∑ n k 
j=1 

√ 

(x k, j − x k, j+1 ) 2 
, (1) 

here x k, j and x k, j+1 are the spatial positions for joint j in part k 

nd its parent joint. n k is the joint number of the part k . 

To intuitively illustrate the calculation process of dynamic data, 

e take the end joint and its parent joint of the right leg as an

xample to display the details. We remove the part index k and 

egard the labels of the end joint and its parent joint as 1 and 2

o simplify the representation. Thus the acceleration a t 
1 

of the end 

oint of the right leg at frame t is formulated as: 

 

t 
1 = x 

t−1 
1 + x 

t+1 
1 − 2 ∗ x 

t 
1 , (2) 

here x t−1 
1 

, x t 
1 
, x t+1 

1 
are spatial positions of the end joint at frame

 − 1 , t and t + 1 . Then, according to the dynamic equilibrium 
3 
quation, we have: 

 1 a 
t 
1 = f t 1 + m 1 g , (3) 

here f t 
1 

is the joint forces (dynamic information) of the end joint 

or right leg at frame t , and g is the gravity. According to Newton’s

hird law, the reaction force of the end joint on its parent joint ˆ f t 
1 

s: 

 

 

t 
1 = −f t 1 . (4) 

ence, the dynamic equilibrium equation for its parent joint is: 

 2 a 
t 
2 = f t 2 + m 2 g + ̂

 f t 1 , (5) 

here f t 
2 

is the force of the 2th joint in part k for frame t . The

ynamic information of a frame x md can be solved iteratively from 

he end joint to the root joint. A video with n frames is expressed

s X 

md ∈ R 

n ×J×3 . 

.3. Preliminaries 

Since we leverage the benefit of Transformer for motion pre- 

iction, we first elaborate its core components, including MHSA 

Multi-head Self-Attention), MHCA (Multi-head Cross-Attention), 

nd FFN (Feed Forward Network). 

MHSA. MHSA is the kernel module of the transformer struc- 

ure. MHSA block first maps the token sequence X ∈ R 

n ×d into 

uery Q ∈ R 

n ×d , key K ∈ R 

n ×d and value V ∈ R 

n ×d through three

inear layers W q ∈ R 

d×d , W k ∈ R 

d×d , W v ∈ R 

d×d , where n is the to-

en number and d is the embedding dimension. Then Q , K and V 

re split into H heads in parallel. For each head h , a softmax op- 

rator is leveraged to establish the correlation between Q h and K h 

nd is scaled by a scale factor of 1 / 
√ 

d . The result will be used to

ultiply V h . The processing of a single head h can be represented 

s follows: 

ttention (Q h , K h , V h ) = Softmax (Q h K 

T 
h / 

√ 

d ) V h . (6)

We process the H heads in parallel, concatenate the outputs 

nd utilize a linear transformation W s to obtain the updated rep- 

esentation of X : 

HSA (X ) = Concat (H 1 , H 2 . . . H h ) W s , (7) 

 h = Attention (Q h , K h , V h ) , h ∈ [1 , 2 , . . . , H] , (8)

here Q = XW q , K = XW k , V = XW v . 

MHCA. MHCA provides an effective manner to establish cross- 

orrelations between different inputs. In this paper, we resort to 

HCA to construct the relationships between future postures and 

istorical postures of kinematic and dynamic so as to learn power- 

ul representation for motion prediction. The MHCA has the same 

tructure as the MHSA, and the only differences are that the query 

erm Q comes from the projection of future motion data Y ∈ R 

m ×d , 

hile the key K and value V derive from transformations of the 

eatures of history motion frames X , and m refers to the length 

f the sequence to be predicted. The process pf MHCA can be ex- 

ressed as: 

HCA ( Y , X ) = Concat (H 1 , H 2 . . . H H ) W c , (9) 

 h = Attention (Q h , K h , V h ) , h ∈ [1 , 2 , . . . , H] . (10)

ere Q = Y W q , K = X W k , V = X W v . W c is the weight of a linear

ayer. 

FFN. FFN is composed of two fully-connected (FC) layers. It is 

pplied after MHSA or MHCA, and is leveraged for feature trans- 

ormation and increases the model’s non-linearity. Its processing 

rocess can be expressed as: 

FN (X ) = σ (XW 1 + b 1 ) W 2 + b 2 , (11) 

here W 1 and W 2 are the convolution kernel parameters of the 

wo FC layers, and b and b are the corresponding bias terms. 
1 2 
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Fig. 1. The framework of our KD-Former. It receives history kinematic and dynamic data as inputs to forecast postures and is optimized in quaternion space via a quaternion 

transformation (QT) layer. �(·) represents the reduced-order dynamic algorithm. 

Fig. 2. Dynamics calculation models. (a) The reduced-order dynamic model in super-high building structure [33] . (b) The reduced-order dynamic model of human body. (c) 

The schematic diagram of stress at joints in our reduced-order algorithm. 
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.4. The proposed KD-Former 

Our KD-Former is a non-autoregressive seq2seq architecture 

ased on the transformer. As shown in Fig. 1 , the encoder mod- 

le consists of a kinematic encoder (K-Encoder) and a dynamic 

ncoder (D-Encoder), both of which are compromised with a spa- 

ial transformer and a temporal transformer. The decoder module 

s made up of a spatial transformer and two temporal transform- 

rs based on a cross-attention mechanism. Furthermore, we incor- 

orate a quaternion transformation (QT) layer to project joint ro- 

ations into quaternion space. Since the transformer has intrinsic 

ermutation invariance, we provide position embedding (PE) for 

ll the transformer blocks to make our model aware of the seman- 

ic information of both skeleton joints and frame indexes. In the 

ollowing, we describe the position embedding, the encoder and 

ecoder modules, and the QT layer in detail. 

Position embedding . To preserve the position information of 

uman skeleton joints, We follow [34] to provide a learnable posi- 

ion embedding E s ∈ R 

J×d for the spatial transformer. Given an in- 

ut motion sequence X 

φ ∈ R 

n ×J×3 , we first transform it into a high-

imensional space with a fully connected (FC) layer W 

φ ∈ R 

3 ×d , 

here n denotes the input sequence length, J refers to the joint 

R

4

umber and 3 represents the joint rotation or joint force. We em- 

ed each joint into a d-dimensional space and use a learnable po- 

ition embedding E pe 1 ∈ R 

J×d to perceive the skeleton joint infor- 

ation. The process of spatial position-aware embedding can be 

escribed as follows: 

 

φ
si 

= X 

φW 

φ + E pe 1 , φ ∈ { mk, md} , (12) 

here mk and md represent the motion kinematic and dynamic, 

espectively. Thus, X 

φ
si 

refers to the kinematic embedding when 

= mk , and it signifies dynamic representation when φ = md. X 

φ
si 

ill later be served as the spatial transformer input (si) for updat- 

ng joint representations. 

In light of [8] , frame index information for motion prediction 

ncourages a model to perceive time stamps and has the poten- 

ial to alleviate the mean pose problem. Therefore, we also intro- 

uce position embedding for the temporal transformer. Our KD- 

ormer involves different temporal transformers (MHSA+FFN VS. 

HCA+FFN) with varied frames for the encoder and decoder. For 

he given history motion sequence X 

φ , assuming the spatial trans- 

ormer output (so) is denoted as X 

φ
so ∈ R n ×(J·d) , similar as the spa-

ial transformer, we provide a learnable position embedding E pe 2 ∈ 

 

n ×(J·d) to distinguish different history frames. This process is for- 
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ulated as follows: 

 

φ
ti 

= X 

φ
so + E pe 2 , (13) 

here X 

φ
ti 

is the temporal position-aware embedding of kinematic 

r dynamic for history sequences, which is acted as the temporal 

ransformer input (ti). 

For the future motion postures to be predicted with m frames, 

e also utilize a leanable embedding E pe 3 ∈ R 

m ×(J·d) to perceive 

emporal information. We use Y 

mk 
so ∈ R 

m ×(J·d) to represent the kine- 

atic output of the spatial transformer in the decoder module. 

hen, we have: 

 

mk 
ti = Y 

mk 
so + E pe 3 . (14) 

Encoder. The encoder concentrates on learning informative fea- 

ures of motion dynamic and kinematic data. Therefore, the en- 

oder module is formulated with the K-Encoder and D-Encoder. 

or a given input sequence with joint rotation representation 

 

mk , we first calculate its dynamic information X 

md through the 

bove proposed order-reduced dynamic algorithm, that is, X 

md = 

(X 

mk ) . Then we implement spatial-aware position embedding via 

q. (12) for X 

mk and X 

md . The embedding results X 

mk 
si 

and X 

md 
si 

ill be later sent into K-Encoder and D-Encoder. Since the two en- 

oders have the same architecture, their learning process is exactly 

he same. We remove the superscript mk or md for simplified rep- 

esentation. Assuming that the depth of the spatial transformer is 

 , for the lth layer, we first leverage the MHSA to model global con-

ext dependencies among joints within frames, the result of which 

s added into the original input to facilitate information flow: 

 

(l) 
si 

= MHSA ( LN (X 

(l) 
si 

)) + X 

(l) 
si 

, (15) 

here X 

(l) 
si 

is the kinematic or dynamic input for the spatial trans- 

ormer of layer l, Z 

(l) 
si 

is the attention features learned the MHSA, 

nd LN stands for layer normalization. Z 

(l) 
si 

is later fed into an FFN 

lock for feature transformation and add nonlinearity, and we also 

dd the result to the input: 

 

(l+1) 
si 

= FFN ( LN (Z 

(l) 
si 

)) + Z 

(l) 
si 

, (16) 

here X 

(l+1) 
si 

is the output of a single spatial transformer layer. 

e implement Eqs. (15) and (16) sequenctially for L times, and 

he final spatial encoding representations for the kinematic and 

ynamic data are denoted as X 

mk 
so ∈ R 

n ×(J·d) and X 

md 
so ∈ R 

n ×(J·d) , re-

pectively. 

Similar as the spatial transformer, we endow X 

mk 
so and X 

md 
so with 

emporal position-aware via Eq. (13) . Then temporal-aware embed- 

ing results X 

mk 
ti 

and X 

md 
ti 

will be advanced by the temporal trans- 

ormer to exploit the temporal global context information. The 

hole learning process is similar to the spatial transformer, which 

an be expressed as: 

 

(l) 
ti 

= MHSA ( LN (X 

(l) 
ti 

)) + X 

(l) 
ti 

, (17) 

 

(l+1) 
ti 

= FFN ( LN (Z 

(l) 
ti 

)) + Z 

(l) 
ti 

, (18) 

here X 

(l) 
ti 

, Z 

(l) 
ti 

and X 

(l+1) 
ti 

respectively refer to the input, attention 

eatures and the output of the lth layer for the temporal trans- 

ormer layer. The final temporal transformer outputs for kinematic 

ata and dynamic data of an input motion sequence are repre- 

ented as X 

mk 
to and X 

md 
to . The encoded kinematic and dynamic fea- 

ures X 

mk 
to and X 

md 
to have powerful representation abilities, which 

ully consider interactions between skeleton joints within the same 

rame and the influence of temporal structure between different 

rames. 

Decoder. The decoder is constructed with a spatial transformer 

nd two temporal transformers. As illustrated in Fig 1 , other 
5 
han the self-attention in K-Encoder and D-Encoder, the tempo- 

al transformers in decoder are built with a cross-attention mech- 

nism, aiming to leverage X 

mk 
to and X 

md 
to for motion prediction. Fur- 

hermore, different from autoregressive-based methods PVRED [8] , 

MGNN [10] making predictions step-by-step, the decoder in our 

etwork forecasts all the future motion postures simultaneously 

ith a non-autoregressive strategy. Last but not least, our model 

redicts the possible postures conditioned on both motion kine- 

atic and dynamic knowledge, whereas existing methods rarely 

onsider the dynamic information. 

Since transformer-based decoder usually decodes a target 

equence with a query token sequence as input, inspired 

y Martínez-González et al. [28] , we set the query tokens as the 

ast frame of the input kinematic data x mk 
n for m copies. The query 

equence is then projected into a latent space via a FC layer and 

dded with spatial-aware position embedding for feature learning. 

iven the spatial transformer in the K-Encoder and decoder play- 

ng the same role, we share the parameters of these layers and 

he corresponding FC layers to reduce model parameters and avoid 

verfitting. Thus we have: 

 

mk 
si = [ x 

mk 
n ; x 

mk 
n ; . . . ; x 

mk 
n ] W 

mk 
s + E pe 1 , (19) 

here Y 

mk 
si 

∈ R 

m ×J×d is the joint position-aware representation for 

uery motion kinematic data, and m represents the length of the 

uery sequence. After then, we promote the spatial representation 

bility of the query kinematic data through the spatial transformer 

y modeling the human skeletal joint dependencies. The process 

an be described as follows: 

 

mk (l) 
si 

= MHSA ( LN (Y 

mk (l) 
si 

)) + Y 

mk (l) 
si 

, (20) 

 

mk (l+1) 
si 

= FFN ( LN (Y 

mk (l) 
si 

)) + Z 

mk (l) 
si 

, (21) 

here Y 

mk (l) 
si 

, Z 

mk (l) 
si 

and Y 

mk (l+1) 
si 

refers to the input, attention fea- 

ure and output of the lth spatial transformer layer in the decoder. 

e repeat Eqs. (20) and (21) for L times and write the result as 

 

mk 
so ∈ R 

m ×(J·d) . 

The temporal information of future motion sequences is cru- 

ial for accurate prediction, therefore we incorporate the tempo- 

al position-aware embedding representation using Eq. (14) , that is, 

 

mk 
ti 

= Y 

mk 
so + E pe 3 . We update Y 

mk 
ti 

with two temporal transformers 

onstructed in a cross-attention manner, which respectively lever- 

ge the encoded history motion kinematic and dynamic informa- 

ion for future motion kinematic residual prediction. Specifically, 

e first utilize the dynamic temporal transformer to learn dynamic 

nformation-conditioned features: 

 

mk (l) 
ti 

= MHCA ( LN (Y 

mk (l) 
ti 

, X 

md 
to )) + Y 

mk (l) 
ti 

, (22) 

 

mk (l+1) 
ti 

= FFN ( LN (Y 

mk (l) 
ti 

)) + Y 

mk (l) 
ti 

. (23) 

he above steps are implemented L times. Then, we utilize the 

inematic temporal transformer to build the cross-interactions be- 

ween the future sequence and history sequence. The process is 

he same as the dynamic temporal transformer, which can be de- 

cribed as follows: 

 

mk (l) 
ti 

= MHCA ( LN (Y 

mk (l) 
ti 

, X 

mk 
to )) + Y 

mk (l) 
ti 

, (24) 

 

mk (l+1) 
ti 

= FFN ( LN (Y 

mk (l) 
ti 

)) + Y 

mk (l) 
ti 

. (25) 

The output of decoder Y 

mk 
to integrates the spatio-temporal char- 

cteristics of dynamic and kinematic of the input motion sequence, 

hich is leveraged to predict the kinematic residuals Y res of future 

ostures via a FC layer. We combine Y res and the query sequence 

o obtain the final results Y : 

 = [ x 

mk 
n ; x 

mk 
n ; . . . ; x 

mk 
n ] + Y res . (26) 
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Quaternion transformation Since human poses described in 

xponential maps may suffer from deadlock and discontinuity, 

uaternion space can effectively eliminate singularities and discon- 

inuities as pointed out in [8] . To leverage the stable numerical 

enefits of quaternion, we follow [8] to transform the predicted 

ose from exponential maps to quaternion space with a Quater- 

ion Transformation (QT) layer. Assuming that the human body 

as J joints, and e t, j refers to the exponential maps of joint j. 

 pose at frame t can be represented as x t = [ e t, 1 ; ... ; e t, j ; ... ; e t,J ] .

or each joint j ∈ { 1 , 2 , . . . , J} , we utilize the QT layer to transform

ts exponential maps e t, j , a three-dimensional vector, into a four- 

imensional vector q t, j : 

 t, j (i ) = 

{ 

cos (0 . 5 ‖ e t, j ‖ ) 2 i=1 , 
sin ((0 . 5) ‖ e t, j ‖ ) 2 

‖ e t, j ‖ 2 · e t, j (i − 1) i ≥2 , 
(27) 

here q t, j is the quaternion of joint j at frame t , q t, j (i ) is the i th

lement with i ∈ { 1 , 2 , 3 , 4 } , and ‖ · ‖ 2 is the L 2 -norm. 

.5. Training and testing loss 

During training, our goal is to minimize the differences between 

he predicted postures and ground truth (GT) in the quaternion 

pace. Following [8] , we utilize the QT layer to convert kinematic 

ata (joint rotations) of exponential maps into quaternion space for 

oss calculation. The training loss L train of an m-frames motion clip 

s defined as: 

 train = 

1 

mJ 

m ∑ 

t=1 

J ∑ 

j=1 

‖ g( y n + t, j ) − g( r n + t, j ) ‖ 1 , (28) 

here g denotes QT operation, y n + t, j and r n + t, j are the GT and pre- 

icted poses of joint j at frame n + t . ‖ · ‖ 1 is the L 1 -norm. 

In the testing phase, we remove the QT layer and the training 

oss from the network and represent human poses by the original 

xponential map. Thus, the prediction error L error is calculated as: 

 error = 

1 

mJ 

m ∑ 

t=1 

J ∑ 

j=1 

‖ y n + t, j − r n + t, j ‖ 2 . (29) 

here ‖ · ‖ 2 is the L 2 -norm. 

. Experiments 

.1. Datasets and evaluation metrics 

Human3.6M [21] . Human3.6M dataset consists of 7 subjects 

erforming 15 activities with a total of 3.6 million 3D human 

oses. Following [8] , we downsample motion sequences by 2 and 

tilize the data of subject 5 for testing with other data for train- 

ng. Before experiments, the dynamic information of all samples is 

alculated in advance, and we filter the dynamic data with 6Hz fil- 

ering. During testing, we measure the Euclidean distance between 

he prediction and ground truth using Euler angles, and the test 

rrors of 8 different seed motion clips are reported. 

CMU MoCap [22] . For the CMU MoCap, we select samples of 

ingle-person action and delete multiple person interactions fol- 

owing [8] . In experiments, motion sequences are downsampled for 

0 FPS. We use the same training and testing set partition strategy 

s [8] . We pre-process the data and conduct evaluation in the same 

ay as we do on the Human3.6M. When evaluating, the average 

istance across 80 sampled seed clips is reported. 

.2. Implementation details 

In experiments, we set the input sequence length n as 50, em- 

edding dimension d as 8, layer number L as 4, and the predic- 

ion length m as 25. During training, batch size and maximum 
6 
pochs equal 32 and 10,0 0 0, adam optimizer with a learning rate 

f 0.0 0 01 is utilized to optimize our model. We obey the proce- 

ures of [10] to conduct short-term and long-term motion predic- 

ions. A sequence of fewer than 500 milliseconds (ms) is regarded 

s short-term prediction, and no less than 500ms is long-term pre- 

iction. Therefore, given observed 50 frames (2 s, 2s), we predict 

he short-term of 10 frames (0.4s) and long-term of 25 frames (1s) 

otion separately. 

.3. Experiments on Human3.6M 

Short-term prediction. In a short period, motion is considered 

o be enlightening and predictable. As observed in Table 1 , our 

ethod produces the most advanced short-term prediction per- 

ormance at 80ms in predicting walking, greeting, phoning, pos- 

ng, purchases, sitting, walking dog, and walking together. Thanks 

o the non-autoregressive prediction, our model is not affected by 

rror accumulations like the autoregressive methods, such as Res 

RU [7] , Conv seq2seq [9] and QuaterNet [23] , and the average 

hort-term performance has been significantly enhanced. when the 

utoregressive model PS [24] is assisted with auxiliary class labels, 

ts prediction result can be largely enhanced. Further, compared 

ith the non-autoregressive POTR [28] , it is not much different at 

0ms. However, there are big gaps in predictions at 160ms, 320ms. 

he comparison results demonstrate the effectiveness and superi- 

rity of our model. 

Long-term prediction. As displayed in Table 1 , our model 

chieves slightly better to the RNNs-based PVRED [8] for long- 

erm prediction. However, compared with the GNN-based Traj- 

CN [26] and DMGNN [10] , a few gaps exist. One possible rea- 

on is that our prediction decoder aims to generate the kinematic 

esiduals of the last frame of an input sequence. As the prediction 

oes further, the deviations between the actual postures and the 

ast frame of the input motion increase gradually. Although there is 

o error accumulation problem in our model, the difficulty of the 

ask gradually increases with the increase of the bias to be pre- 

icted. It should be also noticed that DMGNN [10] designs multi- 

cale GNNs with a considerable model parameter to encode input 

otion and forecast future posture. In contrast, our model is much 

maller with fast inference abilities, which is summarized later. 

.4. Experiments on CMU MoCap 

Short-term prediction. As observed in Table 2 , our model 

chieves the average state-of-the-art performance when perform- 

ng 80ms short-term prediction. With the increase in prediction 

ime, our results still exceed the current advanced methods ex- 

ept for DMGNN [10] and Traj-GCN [26] . We believe this may 

e because the CMU dataset is smaller than the Human3.6M, 

MGNN captures multi-scale topology with complex model pa- 

ameters, and Traj-GCN leverages DCT to better utilizes tempo- 

al structure. Nevertheless, we substantially surpass the CNNs- 

ased (Conv seq2seq [9] ), RNNs-based (Res GRU [7] , PVRED [8] and 

S [24] ) and Transformer-based (POTR [28] ) methods, demonstrat- 

ng the superior performance of our KD-Former. 

Long-term prediction. For long-term prediction on CMU Mo- 

ap, in most cases, our results are much better than most of the 

xisting results as can be observed in Table 2 . Overall, our method 

as the best average results on long-term motion prediction, fur- 

her confirming the superiority of our model. 

.5. Depth analyses and discussions 

Kinematic and dynamic input. Both kinematic and dynamic 

xpressions can be used to describe motion variations. We inple- 

ent experiments with different inputs to validate the superior- 
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Table 1 

Comparisons with the state-of-the-arts regarding angle error for short-term and long-term predictions on Human3.6M dataset. The best results are denoted in bold font. 

Methods 

Walking Eating Smoking Discussion 

Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 

Res GRU [7] 0.28 0.49 0.72 0.81 0.93 1.03 0.23 0.39 0.62 0.76 0.95 1.08 0.33 0.61 1.05 1.15 1.25 1.50 0.31 0.68 1.01 1.09 1.43 1.69 

Conv 

seq2seq [9] 

0.33 0.54 0.68 0.73 - 0.92 0.22 0.36 0.58 0.71 - 1.24 0.26 0.49 0.96 0.92 - 1.62 0.32 0.67 0.94 1.01 - 1.86 

QuaterNet [23] 0.28 0.49 0.76 0.83 - - 0.22 0.47 0.76 0.88 - - 0.25 0.47 0.93 0.90 - - 0.48 0.74 1.20 1.37 - - 

DMGNN [10] 0.18 0.31 0.49 0.58 0.66 0.75 0.17 0.30 0.49 0.59 0.74 1.14 0.21 0.39 0.81 0.77 0.83 1.52 0.26 0.65 0.92 0.99 1.33 1.45 

POTR [28] 0.16 0.40 0.62 0.73 - - 0.11 0.29 0.53 0.68 - - 0.14 0.39 0.84 0.82 - - 0.17 0.56 0.85 0.96 - - 

PVRED [8] 0.20 0.35 0.54 0.59 0.65 0.66 0.18 0.32 0.54 0.66 0.76 1.14 0.22 0.44 0.81 0.91 0.97 1.42 0.24 0.60 0.83 0.93 1.29 1.77 

Traj-GCN [26] 0.18 0.31 0.49 0.56 0.65 0.67 0.16 0.29 0.50 0.62 0.87 1.57 0.22 0.41 0.86 0.80 1.33 1.70 0.20 0.51 0.77 0.85 0.90 1.27 

PS [24] 0.21 0.34 0.52 0.60 - 0.73 0.18 0.31 0.50 0.62 - 1.16 0.23 0.43 0.86 0.81 - 1.56 0.26 0.63 0.88 0.92 - 1.39 

Ours 0.15 0.32 0.54 0.61 0.70 0.69 0.14 0.28 0.50 0.51 0.71 1.08 0.17 0.37 0.76 0.91 1.01 1.46 0.19 0.53 0.87 0.90 1.24 1.69 

Methods Directions Greeting Phoning Posing 

Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 

Res GRU [7] 0.45 0.68 0.93 1.05 1.15 1.64 0.53 0.88 1.33 1.50 1.82 2.14 0.50 0.77 1.20 1.31 1.55 2.05 0.43 0.89 1.68 2.02 2.39 2.85 

Conv 

seq2seq [9] 

0.39 0.60 0.80 0.91 - 1.67 0.51 0.82 1.21 1.38 - 1.72 0.59 1.13 1.51 1.65 - 1.81 0.29 0.60 1.12 1.37 - 2.65 

QuaterNet [23] 0.24 0.46 0.84 1.01 - - 0.61 0.93 1.34 1.51 - - 0.36 0.61 0.98 1.14 - - 0.38 0.71 1.20 1.39 - - 

DMGNN [10] 0.25 0.44 0.65 0.71 0.86 1.30 0.36 0.61 0.94 1.12 1.57 1.63 0.52 0.97 1.29 1.43 1.44 1.64 0.20 0.46 1.06 1.34 1.49 2.17 

POTR [28] 0.20 0.45 0.79 0.91 - - 0.29 0.69 1.17 1.30 - - 0.50 1.10 1.50 1.65 - - 0.18 0.52 1.18 1.47 - - 

PVRED [8] 0.31 0.42 0.66 0.72 0.89 1.45 0.40 0.66 1.00 1.13 1.36 1.62 0.45 0.69 1.26 1.34 1.54 1.75 0.26 0.62 1.19 1.42 1.60 2.44 

Traj-GCN [26] 0.26 0.45 0.71 0.79 - - 0.36 0.60 0.95 1.13 - - 0.53 1.02 1.35 1.48 - - 0.19 0.44 1.01 1.24 - - 

PS [24] 0.32 0.51 0.65 0.72 - 1.26 0.43 0.68 1.01 1.19 - 1.65 0.55 0.98 1.32 1.44 - 1.50 0.20 0.45 0.93 1.15 - 2.16 

Ours 0.24 0.52 0.72 0.77 0.88 1.36 0.27 0.72 1.11 1.25 1.53 1.89 0.17 0.66 1.28 1.35 1.54 1.95 0.17 0.43 0.92 1.18 1.53 2.29 

Methods Purchases Sitting Sitting down Taking photo 

Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 

Res GRU [7] 0.58 0.86 1.24 1.35 1.48 2.35 0.44 0.76 1.27 1.95 1.66 1.91 0.52 0.99 1.50 1.74 1.40 2.06 0.29 0.62 1.01 1.16 0.88 1.10 

Conv 

seq2seq [9] 

0.63 0.91 1.19 1.29 - 2.52 0.39 0.61 1.02 1.18 - 1.67 0.41 0.78 1.16 1.31 - 2.06 0.23 0.49 0.88 1.06 - 1.40 

QuaterNet [23] 0.54 0.92 1.36 1.47 - - 0.34 0.59 1.00 1.15 - - 0.47 0.81 1.31 1.50 - - 0.23 0.39 0.69 0.81 - - 

DMGNN [10] 0.41 0.61 1.05 1.14 1.39 2.13 0.26 0.42 0.76 0.97 1.12 1.51 0.32 0.65 0.93 1.05 1.30 1.74 0.15 0.34 0.58 0.71 0.83 1.06 

POTR [28] 0.33 0.63 1.04 1.09 - - 0.25 0.47 0.92 1.09 - - 0.25 0.63 1.00 1.12 - - 0.12 0.41 0.71 0.86 - - 

PVRED [8] 0.47 0.71 1.05 1.10 1.48 2.35 0.30 0.47 0.84 1.56 1.66 1.91 0.58 0.70 1.03 1.19 1.40 2.06 0.17 0.40 0.66 0.79 0.88 1.10 

Traj-GCN [26] 0.43 0.65 1.05 1.13 - - 0.29 0.45 0.80 0.97 - - 0.30 0.61 0.90 1.00 - - 0.14 0.34 0.58 0.70 - - 

PS [24] 0.50 0.69 1.04 1.09 - 2.16 0.29 0.43 0.80 0.99 - 1.50 0.34 0.64 0.92 1.03 - 1.61 0.19 0.39 0.65 0.77 - 1.03 

Ours 0.26 0.72 0.97 1.07 1.29 2.13 0.23 0.53 0.94 1.61 1.71 1.97 0.26 0.63 0.98 1.12 1.36 1.90 0.15 0.39 0.72 0.84 1.00 1.26 

Methods Waiting Walking dog Walking together Average 

Short-term Long-term Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 

Res GRU [7] 0.34 0.67 1.17 1.35 1.64 2.22 0.52 0.85 1.29 1.48 1.66 1.92 0.30 0.60 0.87 0.95 1.14 1.61 0.41 0.72 1.14 1.33 1.57 2.04 

Conv 

seq2seq [9] 

0.30 0.62 1.09 1.30 - 2.50 0.59 1.00 1.32 1.44 - 1.92 0.27 0.52 0.71 0.74 - 1.28 0.38 0.68 1.01 1.13 - 1.77 

QuaterNet [23] 0.32 0.54 1.00 1.15 - - 0.48 0.78 1.12 1.21 - - 0.28 0.45 0.69 0.79 - - 0.37 0.62 1.00 1.14 - - 

DMGNN [10] 0.22 0.49 0.88 1.10 1.46 2.12 0.42 0.72 1.16 1.34 1.57 1.75 0.15 0.33 0.50 0.57 0.70 1.24 0.27 0.52 0.83 0.95 1.17 1.57 

POTR [28] 0.17 0.56 1.14 1.37 - - 0.35 0.79 1.21 1.33 - - 0.15 0.44 0.63 0.70 - - 0.22 0.56 0.94 1.01 1.30 1.77 

PVRED [8] 0.23 0.49 0.93 1.15 1.55 2.28 0.45 0.74 1.13 1.29 1.49 1.75 0.17 0.38 0.59 0.64 0.75 1.26 0.31 0.53 0.87 1.03 1.22 1.66 

Traj-GCN [26] 0.23 0.50 0.91 1.14 - - 0.46 0.79 1.12 1.29 - - 0.15 0.34 0.52 0.57 - - 0.27 0.51 0.83 0.95 - - 

PS [24] 0.26 0.52 0.94 1.15 - 2.25 0.47 0.77 1.20 1.36 - 1.90 0.18 0.38 0.53 0.58 - 1.31 0.31 0.54 0.85 0.96 - 1.54 

Ours 0.18 0.47 0.98 1.15 1.50 2.35 0.31 0.74 1.12 1.35 1.48 1.79 0.15 0.39 0.55 0.62 0.68 1.11 0.20 0.51 0.86 1.01 1.21 1.66 

7



J. Dai, H. Li, R. Zeng et al. Pattern Recognition 143 (2023) 109806 

Table 2 

Comparisons with the state-of-the-arts regarding angle errors for short-term and long-term predictions on CMU MoCap dataset. The best results are denoted in bold font. 

Methods 

Basketball Basketball signal Directing traffic 

Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 80 160 320 400 560 10 0 0 

Res GRU [7] 0.49 0.77 1.26 1.45 - 1.77 0.42 0.76 1.33 1.54 - 2.17 0.31 0.58 0.94 1.10 - 2.06 

Conv 

seq2seq [9] 

0.37 0.62 1.07 1.18 - 1.95 0.32 0.59 1.04 1.24 - 1.96 0.25 0.56 0.89 1.00 - 2.04 

DMGNN [10] 0.30 0.46 0.89 1.11 - 1.66 0.10 0.17 0.31 0.41 - 1.26 0.15 0.30 0.57 0.72 - 1.98 

POTR [28] 0.31 0.61 1.07 1.24 1.43 1.60 0.20 0.33 0.62 0.75 0.94 1.24 0.32 0.48 1.01 1.18 1.58 1.61 

PVRED [8] 0.36 0.56 0.95 1.13 1.41 1.61 0.22 0.33 0.61 0.74 1.39 1.53 0.31 0.48 0.78 0.90 1.40 1.54 

Traj-GCN [26] 0.33 0.52 0.89 1.06 - 1.71 0.11 0.20 0.41 0.53 - 1.00 0.15 0.32 0.52 0.60 - 2.00 

PS [24] 0.33 0.55 1.00 1.21 - 1.48 0.12 0.21 0.41 0.52 - 1.07 0.22 0.47 0.73 0.84 - 2.05 

Ours 0.25 0.56 1.04 1.20 1.40 1.58 0.12 0.25 0.47 0.60 0.81 1.26 0.28 0.47 1.04 1.18 1.38 1.49 

Methods Jumping Running Soccer 

Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res GRU [7] 0.57 0.86 1.76 2.03 - 2.42 0.32 0.48 0.65 0.74 - 1.00 0.29 0.50 0.87 0.98 - 1.73 

Conv 

seq2seq [9] 

0.39 0.60 1.36 1.56 - 2.01 0.28 0.41 0.52 0.57 - 0.67 0.26 0.44 0.75 0.87 - 1.56 

DMGNN [10] 0.37 0.65 1.49 1.71 - 1.79 0.19 0.31 0.47 0.49 - 0.64 0.22 0.32 0.79 0.91 - 1.54 

POTR [28] 0.32 0.65 1.07 1.30 1.49 1.82 0.26 0.53 0.73 0.70 0.68 0.74 0.26 0.69 1.09 1.28 1.46 1.58 

PVRED [8] 0.46 0.65 1.12 1.35 1.57 1.75 0.26 0.36 0.46 0.52 0.59 0.64 0.32 0.45 1.10 1.24 1.42 1.65 

Traj-GCN [26] 0.31 0.49 1.23 1.39 - 1.80 0.33 0.55 0.73 0.74 - 0.95 0.18 0.29 0.61 0.71 - 1.40 

PS [24] 0.38 0.66 1.46 1.64 - 1.79 0.31 0.52 0.76 0.79 - 0.57 0.21 0.40 0.77 0.88 - 1.48 

Ours 0.26 0.62 1.06 1.30 1.51 1.90 0.23 0.44 0.47 0.49 0.58 0.62 0.19 0.40 0.86 1.16 1.35 1.54 

Methods Walking Washing window Average 

Short-term Long-term Short-term Long-term Short-term Long-term 

80 160 320 400 560 1000 80 160 320 400 560 1000 80 160 320 400 560 1000 

Res GRU [7] 0.35 0.45 0.59 0.64 - 0.88 0.31 0.47 0.74 0.93 - 1.37 0.38 0.61 1.01 1.17 - 1.67 

Conv 

seq2seq [9] 

0.35 0.44 0.45 0.50 - 0.78 0.30 0.47 0.80 1.01 - 1.39 0.31 0.51 0.86 0.99 - 1.54 

DMGNN [10] 0.30 0.34 0.38 0.43 - 0.60 0.20 0.27 0.62 0.81 - 1.09 0.22 0.35 0.69 0.82 - 1.32 

POTR [28] 0.20 0.31 0.43 0.49 0.54 0.65 0.26 0.45 0.82 0.95 1.08 1.19 0.27 0.51 0.85 0.98 1.15 1.31 

PVRED [8] 0.28 0.34 0.41 0.43 0.47 0.53 0.25 0.37 0.67 0.81 1.02 1.20 0.30 0.44 0.76 0.89 1.15 1.30 

Traj-GCN [26] 0.33 0.45 0.49 0.53 - 0.61 0.22 0.33 0.57 0.75 - 1.20 0.25 0.39 0.68 0.79 - 1.33 

PS [24] 0.31 0.39 0.39 0.43 - 0.59 0.25 0.37 0.61 0.81 - 1.08 0.27 0.45 0.77 0.89 - 1.26 

Ours 0.18 0.29 0.38 0.43 0.50 0.59 0.15 0.31 0.62 0.74 0.93 1.09 0.20 0.41 0.74 0.88 1.05 1.26 

Table 3 

Experiments on Human3.6M with different inputs (Kinematic Vs. Dynamic), decoding manners (Autoregressive: AR, Non- 

autoregressive: N-AR), position embedding (PE) (Learnable Vs. Absolute) and involvement of quaternion transformation 

(QT). 

Models Decoding PE QT 

Average 

Short-term Long-term 

80 160 320 400 560 10 0 0 

K-Former N-AR Learnable Yes 0.21 0.53 0.89 1.04 1.26 1.71 

D-Former N-AR Learnable Yes 0.21 0.52 0.88 1.05 1.25 1.68 

KD-Former N-AR Absolute Yes 0.22 0.52 0.89 1.05 1.25 1.70 

KD-Former N-AR Learnable No 0.30 0.59 0.95 1.10 1.28 1.77 

KD-Former AR Learnable Yes 0.24 0.55 0.90 1.08 1.25 1.70 

KD-Former N-AR Learnable Yes 0.20 0.51 0.86 1.01 1.21 1.66 
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ty of dynamic information. The short-term and long-term angular 

rediction errors of different models are summarized in Table 3 , 

here K-Former refers to only kinematic data served as network 

nput, and D-Former means only dynamic data used for network 

nput. It can be observed that the dynamic data shows slightly bet- 

er learnable characteristics than kinematic clue, and the predic- 

ion errors are lower than that of kinematic data. When we lever- 

ge the mutual information of kinematic and dynamic knowledge 

or motion prediction, our KD-Former achieves the lowest joint ro- 

ation error results. The results demonstrate the superiority of in- 

orporating dynamic information for motion prediction. 
8 
Involvement of quaternion transformation (QT). QT is lever- 

ged to eliminate singularities and discontinuities of rotation an- 

les. We conduct experiments to validate the effectiveness of QT 

nd report the results in Table 3 . It can be seen that the incor-

oration of QT can significantly improve short-term and long-term 

otion prediction performance. 

Autoregressive and non-autoregressive. Our model is a 

eq2seq framework. The decoder can decode a query sequence 

utoregressive (AR) as [12] or non-autoregressive (N-AR) similar 

o Martínez-González et al. [28] . We verify the motion prediction 

nfluence of the two decoding strategies. Table 3 reports the results 
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Fig. 3. Different number of body part divisions for Human3.6M dataset. 

Table 4 

Comparisons of different number of body parts in dynamic model on 

Human3.6M. 

Body parts 

Average 

Short-term Long-term 

80 160 320 400 560 10 0 0 

3 0.22 0.54 0.90 1.07 1.28 1.72 

5 0.20 0.51 0.86 1.01 1.21 1.66 

7 0.21 0.53 0.89 1.05 1.27 1.70 
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Table 5 

Experiments on Human3.6M with different fusion patterns in the decoder. 

Fusion patterns 

Average 

Short-term Long-term 

80 160 320 400 560 10 0 0 

Serial 0.20 0.51 0.86 1.01 1.21 1.66 

Parallel 0.20 0.53 0.88 1.06 1.28 1.71 

Flat 0.21 0.52 0.89 1.05 1.26 1.69 
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f KD-Former predicting future motion in AR and N-AR manners. 

he N-AR predictions are found to perform better than AR results 

or either short-term or long-term motion predictions. The possible 

eason is that the N-AR technique can avoid the error accumulation 

roblem caused by inaccurate predictions. Therefore, we leverage 

-AR to simultaneously predict all frames, significantly speeding 

p training and testing as reported later. 

Absolute and learnable. In the conventional transformer, posi- 

ion embedding (PE) is encoded with absolute representation [12] . 

n this paper, we follow [34] to implement learnable PE for spa- 

ial joints and temporal frames. To identify whether absolute or 

earnable PE is more suitable for our KD-Former, we conduct com- 

arisons and report the results in Table 3 . It can be safely con-

luded that learnable PE obtains better performance than the abso- 

ute one. Therefore, we introduce learnable PE for our framework. 

Different number of body parts. To verify the effects of the 

umber of human body parts in dynamics calculation models, as 

hown in Fig. 3 , we divide the human body into 3, 5, and 7 parts

rom simple to complex structures according to natural connec- 

ions between skeleton joints. Experimental results on the Hu- 

an3.6M dataset have been reported in Table 4 . It can be observed 

hat a more simple or complex body division brings inferior results 

han dividing the body into 5 parts. Therefore, we prefer to divide 

he human body into 5 parts to achieve better prediction perfor- 

ance. 

Information fusion pattern. Since kinematic and dynamic data 

re complementary, we simultaneously receive the encoded fea- 

ures of the dynamic encoder and the kinematic encoder to decode 

nd predict. To effectively integrate the two mutually beneficial in- 

ormation clues, we design three fusion decoders i.e., serial, par- 

llel and flat, according to the design schemes given in [35] . The 

btained results are shown in Table 5 . It can be seen that the se-

ial fusion is better than that of parallel and flat. Therefore, the 
9 
roposed KD-Former leverages the serial fusion pattern to design 

he decoder. 

Computational complexity. To further validate the superiority 

f our method, we make comparisons with state-of-the-arts re- 

arding model parameters, running times in predicting 10 0 0ms. 

e report the average results of short-term prediction for all ac- 

ions and long-term prediction of four actions (Walking, Eating, 

moking, and Discussion) following the statistics in Traj-GCN [26] . 

rom Table 6 , we can observe that our KD-former holds an impres- 

ive advantage of short-term prediction at 80 ms. However, when 

he prediction goes further, the result becomes slightly inferior to 

he DMGNN [10] and Traj-GCN [26] . Nevertheless, compared with 

he RNNs-based PVRED [8] and transformer-based POTR [28] meth- 

ds, our method achieves the best performance and fastest running 

peeds with moderate parameters. 

Efficiency of the reduced-order dynamic algorithm. To verify 

he superiority of our simplified dynamic model, we make com- 

arisons with the dynamic algorithm in OpenSim [19] . We utilize 

he C3D data to drive the mechanical model of OpenSim, which 

ontains 17 joints with 30 degrees of freedom (DOFs). We first 

ompute the kinematic data through inverse kinematics tool in 

penSim. Then, we use the inverse dynamic module in OpenSim 

o obtain the dynamic data and define the processing time as dy- 

amics calculation time (DCT). We choose the corresponding joints 

nd DOFs as OpenSim to make a fair comparison. The DCT of each 

rame and the average angle errors on CMU MoCap are illustrated 

n Table 7 . We can observe that the DCT and prediction errors un- 

er various motion prediction lengths with 30 DOFs are lower than 

he algorithm in OpenSim. The results demonstrate the outstand- 

ng advantages of our simplified reduced-order algorithm. 

Attention visualization. To verify whether kinematic and dy- 

amic data are mutually beneficial, we randomly selected the 

alking action on the test set S5 of Human36M as an example to 

isualize attention results. Fig. 4 (a)–(d) display the attention maps 
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Table 6 

Model parameters, running times at 10 0 0ms, short-term and long-term prediction performance are com- 

pared with state-of-the-art methods on Human 3.6M. 

Methods Parameters Time 

Average 

Short-term Long-term 

80 160 320 400 560 10 0 0 

DMGNN [10] 61.97M 0.086 0.27 0.52 0.83 0.95 0.89 1.22 

POTR [28] 13.73M 0.040 0.22 0.56 0.94 1.01 - - 

PVRED [8] 8.17M 0.034 0.31 0.53 0.87 1.03 0.92 1.25 

Traj-GCN [26] 2.27M 0.013 0.27 0.51 0.83 0.95 0.90 1.27 

Ours 8.53M 0.018 0.20 0.51 0.86 1.01 0.92 1.23 

Fig. 4. Visualization of the self-attention results for the encoder module. 

Table 7 

Comparisons of different dynamics algorithms on CMU MoCap. 

Method DCT (ms) 

Angle errors under different lengths 

80 160 320 400 560 10 0 0 

OpenSim (30) 2.8 0.17 0.33 0.56 0.65 0.81 0.98 

Ours (30) 0.2 0.16 0.30 0.54 0.64 0.79 0.96 
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f heads 5 and 7 for the kinematic and dynamic spatial encoders. 

e observe that head 5 in the kinematic spatial encoder focuses 

n joints 6, 7, 8, corresponding to the right leg ( Fig. 4 (a)), while

ead 7 concentrates on the right arm of joints 24, 26, 27 ( Fig. 4 (b)).

or the dynamic spatial encoder, head 5 concerns the end effec- 

ors of different parts, i.e. , joints 5, 10, 15, 21, and 29 ( Fig. 4 (d)),

hereas head 7 mainly notices joints 1, 2, 3, and 4, corresponding 

o the left leg. In our framework, the kinematic and the dynamic 

eature extractors have the same structure, but different represen- 

ations of kinematic and dynamic information are found by visual- 

zing the attentional maps. Hence, we believe that adding dynamic 

ata enhances the motion expression ability. 

Motion prediction. We randomly select some action samples 

o conduct motion prediction. The quantitative comparisons with 

OTR [28] , PVRED [8] and DMGNN [10] on Human3.6M (Top) and 

MU MoCap (Bottom) are displayed in Fig. 5 . We visual predic- 
10 
ion results of 400 ms with a time interval of 40 ms. For peri- 

dic running motion, our model generates movements closer to 

T. For complex motion with rapid changes, such as jumping, our 

etwork shows better prediction results against DMGNN [10] and 

OTR [28] . For activities of daily living, such as purchases and 

moking, we can observe that the prediction results in the hands 

nd legs of our network are better than other methods. The quali- 

ative visualization results further verify the excellent performance 

f our network for motion prediction. 

Limitations. Our model currently performs well for short-term 

otion prediction. However, its performance is inferior for long- 

erm prediction compared to the most advanced methods. We vi- 

ualize some failure cases of long-term prediction (560ms-10 0 0ms) 

n Fig. 6 . It can be seen that the predicted motion movements have 

elatively large deviations from ground truth (GT) motion. We at- 

ribute the reason that when the prediction goes further, the devi- 

tions between actual postures and the last frame of input motion 

radually increase. Therefore our future work will focus on enhanc- 

ng long-term motion prediction. Besides, since we leverage the 

implified order-reduced physical model to calculate motion dy- 

amics and ignore the force acting on the ground, our algorithm 

an hardly estimate the truth joint forces, restricting motion pre- 

iction performance. Hence, the accurate and fast motion dynamics 

odel is also one of the priorities for the future. 
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Fig. 5. Qualitative prediction results on Human3.6M (Top) and CMU (Bottom). 

Fig. 6. Some failure cases for long-term prediction. 
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. Conclusion 

This paper presents a novel non-autoregressive KD-Former, a 

ransformer-based seq2seq encoder-decoder framework, for 3D hu- 

an motion prediction. Different from most existing models using 

nly kinematic information, dynamic knowledge is introduced for 

otion prediction for the first time in our model and a simpli- 

ed order-reduced physical model is presented to obtain dynamic 

ata. Comprehensive experiments on Human3.6M and CMU Mo- 

ap datasets demonstrate the superiority of incorporating dynamic 

nformation for short-term motion prediction and impressive per- 

ormance with fast running speed over state-of-the-art methods. 

n spite of that, our method perform inferior for long-term predic- 

ion over the most advanced methods. In the future, we will fo- 

us on estimating accurate dynamic information with appropriate 

omplexity, so as to enhance long-term performance. 
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