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ABSTRACT 
In orthopedic surgery, the traditional restoration of comminuted 
fracture basically relies on surgeon’s manual work, which is 
usually intricate and error-prone. If fractured bones are poorly 
reassembled, the patient may suffer from more exposure to 
radiation and longer recovery time. More severely, some 
operation mistakes can cause sequela, such as joint dysfunction 
and infection. Therefore, orthopedic surgeons urgently need an 
intelligent assistance solution to improve the accuracy and 
reliability of fractured bones reassembly in procedure. This paper 
presents an automatic pipeline for virtual reassembly of fractured 
bones which are broken into pieces. It uses an intact bone as a 
template. We first reconstruct the 3D fractured bone from CT data 
using MIMICS. Then we analyze the shape structure of bone 
model through extracting key feature points and comparing 
descriptors. Finally, we search the correspondence between the 
fragments and template. The aligning is performed to ensure the 
fragments can join together. Compared with some semi-automatic 
reassembly methods for archaeological artifacts and forensic 
evidences, ours is fully automatic without human interactions and 
specialized to medical purposes. It can help orthopedic surgeons 
to make correct decisions in fractured bones reassembly. 
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1 INTRODUCTION 
Comminuted fracture repairing surgery (Figure 1) is an effective 
treatment for patients who break their bones into pieces. In the 
procedure, surgeons should find the similarity between every 
piece and put them back on the original place,  
 
which is a complicated and time-consuming task. Traditionally, 
since surgeons cannot see the inside environment intuitively 
before splitting the soft tissue and reveal the fractured bones, they 

can only refer to their clinical experience to find correspondence 
among the pieces with the help of X-ray or CT images. However, 
subjective judgement unavoidably makes mistakes and causes  
 
inaccurate matching, which will make the patient endure longer 
recovery time. Major misplacements can lead to postoperative 
complications and even failure of surgery. Additionally, in 
traditional procedure, the surgery usually takes very long time and 
patients need being exposed to more radiation.  

With the advance of medical imaging and computer assisted 
surgery technology, there emerges some new alternatives. CT 
scans the human body and obtains high-resolution 3D geometry 
information that precisely depict details of each bone. The 
geometry data can be adopted to reconstruct bone models, with 
which we can create a virtual platform and operate on computers 
to simulate the real surgery. Furthermore, as the models maintain 
both geometry structure of each bone and details of the broken 
faces, we can process and analyze their feature to perform 
automatic matching of the fractured bones. When all pieces 
combining together, it is possible to achieve reassembling the 
bones beforehand. 
 

 
Figure 1: Comminuted fracture repairing surgery 
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Reassembling the fractured pieces on computer before a 
surgery offers great help. It can provide a platform for surgeons to 
virtually rehearse the surgery and give them more reference to 
assess complexity and anticipate potential difficulty in three-
dimensional space. In this paper, we develop an effective pipeline 
to create 3D model of broken bone pieces from CT image and 
reassemble them virtually without any manual help. Moreover, we 
analyze and compare the commonly used keypoints detector and 
descriptor for 3D model processing, tracking and registration. We 
mainly adopt template-based assembling methods, which needs a 
complete bone model as a template and align the fragment onto 
the template so that they can patch together. Our work mainly 
consists of three steps, which can be illustrated as Figure 2:  

1) Creating 3D model of pieces and template from CT 
images; 

2) Extracting keypoints on each model and calculate 

descriptor for the keypoints; 
3) Performing a template matching to align the pieces and 

template. 
 
The main contributions of our work include: 
1) We propose a complete pipeline to virtually reassemble 

fractured bones including reconstructing model, extracting 
keypoints and computing descriptor and aligning 
fragments to template. 

2) We develop a system to implement the reassembly 
method. It can be applied in comminuted fracture 
repairing surgery and help surgeons in the real medical 
situations. 

3) Compared with the general reassembly pipeline, our 
method is specially designed for orthopedic surgery                     

which covers both CT data preprocessing and subsequent 
matching operations. 

 
 

2 RELATED WORK 
The process of assembling comminuted fracture is similar to 
repairing archeological findings, like pottery, chinaware, sculpture 
and monument. The main task is to find the correspondence and 
match them together. There are some studies which put forward 
methods helping to reassemble the fractured objects including 
semi-automatically and automatically.  

 

2.1 Semi-automatic Methods 
Papaioannou et al. [2] proposed a semi-automatic method dealing 
with archeological monuments. To avoid manual attempts with 
fragile and heavy fragments, they designed a system to assist 
archaeologists in reassembling monuments or smaller findings. 
They first construct 3D mesh from the pieces and segment them 
into faces. Parikh et al. [3] presented an approach in which the 

user can easily reassemble an object from a large number of 
irrelevant pieces by iteratively picking correspondent parts. 
Mellado et al [4] presented a method based on a real-time 
interaction circle: an expert approximately points out initial 
relative orientations and positions between two fragments through 
an intuitive user interface. These initial poses are iteratively 
improved and corrected by the system in real time. Zhou et al. [1] 
proposed a for virtual reconstruction system for comminuted bone 
fractures. Users need to manipulate the fragment models and 
identify potential matches and then the alignment algorithms take 
the approximately placed fragments and find an arrangement that 
can minimize the global error of the alignment. Palmas et al. [5] 
proposed a computer-assisted constraint-based method for virtual 
reassembly of heritage works. The system involves users in the 
assembly process, digging their experience and professional 
knowledge. The core idea is to let users define how the fragments 
should be matched and then make use of all constraints. 

However, these methods are not so intelligent, and need 
feedback from users to perform successive steps, which still calls 
for complicated manual work and professional experience. There 

Figure 2: Flowchart of our method 
 



are some researchers going further to come up with some fully 
automatic methods.  

 

2.2 Automatic Methods 
The aim of automatic methods is to approximately compute initial 
position of every fragment through identifying corresponding 
feature among the fragments. Therefore, the key process is to 
choose a robust and expressive descriptor to represent the features 
of each fractured area. Shape descriptor that we need should be 
based on local features, which means it depends on the specific 
point as well as the neighborhood in certain radius and it won’t be 
influenced by rigid transformation. Taking these prerequisites into 
account, the main task is similar to registration of 3D mesh or 
point set [6][7]. 

Huang et al [8] proposed a pipeline to resemble multiple 
fragments including segmentation, local registration and global 
registration. Segmentation is to identify fractured faces according 
to the roughness; local registration is pairwise matching of the 
pieces and construct a match graph to record the relationship 
between the candidates; global registration is to minimize the 
matching error and find an optimal solution. The framework is 
classical and widely adopted by others. Toler et al. [9] approach to 
determine matches between small pieces of artifacts like frescoes; 
they put forward a series of descriptors based not only on shape 
and color but also normal maps. Another work on computer-
assisted matching of fragments is presented by Brown et al. [10] 
which is similar to the method of Koller et al. [11] who solved 
reconstructing of the Severan Marble Plan of ancient Rome. The 
method of McBride et al. [12] consists of two steps: they first 
compare each fragment pair and find similar parts of their 
boundaries by partial curve matching; then they seek for a 
globally optimal solution based on a best-first strategy so as to 
align pieces with the best match. Then a method base on 
hierarchical clusters of points matching is proposed by 
Winkelbach et al. [13]. It aims to combine two fragments and treat 
them as a new piece, and iteratively performs the matching 
process in a tree structure. What’s better than others’ approach is 
that when matching the larger piece, they simultaneously optimize 
the pairs already combined. Belenguer et al. [14]  presented an 
automatic matching strategy using a shape-descriptor of a discrete 
sampling for the fracture surface. And then Zhang et al. [20] put 
forward new algorithm integrating fragments matching and 
template matching to reassemble thin-shell pieces, which 
performs effectively and robustly when reconstructing skulls and 
ceramic artifacts.  
 
 

3 RECONSTRUCTION OF  BONE MODEL  
Medical CT is a diagnostic aid widely used by orthopedic doctors. 
CT tomography imaging reflects the attenuation rate of X-rays 
from different tissues. The reconstruction of three-dimensional 
models for medical two-dimensional images is a hot topic in 
medical data research. Some people tried to use AutoCAD 

software to import CT images into a CAD window and create a 
three-dimensional model manually. However, the results of 
modeling have a certain difference with the actual situation, and it 
is difficult to meet medical requirements. 

Materialise Mimics (Materialise's interactive medical image 
control system) is a medical image control system invented by 
Materialise. It is a modular structured software and can be 
configured according to different needs of users. It reads various 
scan data (CT, MRI), builds 3D models for editing, and then 
outputs widely used format like CAD, FEA, RP. Therefore, we 
perform the data conversing and processing works on Mimics 
Medical 20.0 and extra processing on Materialise 3-matic 11.0. 
 

3.1 Importing CT Images 
Run Mimics Medical 20.0, in the basic interface (Figure 3), enter 
File/Import Images, select the DIMCOM format file, and import, 
read a set of 16-slice spiral CT images. Four frames displayed 
views from different viewpoint of the image, with the upper left 
frame for front view, the lower left for side view, the upper right 
for top view and the lower right for perspective view. For any 
position of any view, we can use the mouse to directly click the 
position we want to operate. The position of the cross line will 
reach the clicked position. The other three views will also change 
accordingly.  
 

 

3.2 Separating Pieces 
Due to the existence of soft tissue and precision limit of the 
scanning device, we may see the pieces are broken but still 
connect to each other. The connection can make negative effect to 
the final result, because the connected pieces can be seen as one 
object by the program and won’t be processed. Therefore, we 
need to separate them before successive operation. The separating 
includes three steps:  

1) Define a proper threshold to distinguish soft tissue and 
bones;  

2) Use multiple slice edit to cut off invalid connection and 
make the contour clear;  

3) Perform region growing algorithm to sperate the piece. 

Figure 3: General interface of Mimics Medical 20.0 



 
The deciding of the threshold depends on the purpose of the 

model. It is easier to select the patient's soft tissue with a smaller 
threshold. If the threshold is larger, only the denser part will be 
retained. Enter segment tools in the menu bar and click 
thresholding (Figure 4). Choosing a proper upper and lower bound 
of threshold, we can get the image containing denser objects, 
which is almost bones.  

However, they are still connected to each other by the cartilages 
and invalid areas. We can’t remove the cartilage automatically 
because if the lower bound is set too low, some other tissue may 
be included which will cause more interference. We can only 
remove it manually. That’s where multiple slice tool contributes. 
Click multiple slice edit in the segment menu, set proper 
parameter and take the brush to mark the area between two 
different bones (Figure 5). Scroll up and down to continue 
marking on different layers, and the tool can interpolate the 
interval between layers. Operate on different frames of view so 
that the bones can be totally separated.  

 

 
 

 
After multiple slicing, the bones are disconnected. Then we can 

perform the region growing to extract specific bone. Click the 
region growing tools in segment menu and choose the region we 
want to extract. If the region is totally isolated it will be selected 
alone (Figure 6).  

 

 
At last, we can export the extracted bone to Materialise 3-matic 

and perform some post processing. We can make modifications to 
on the model then smooth it to remove the noise. As the bone 
contains hollows and complex structures inside, it is inevitable for 
the model to hold some non-manifold or abnormal structures. We 
need clean it up and fix it in 3-matic. Finally, we get the 3D model 
we need.  
 
 

4 CALCULATING KEYPOINTS AND DESCRIPTOR 

Since the data size of our bone model is very large, it is 
computationally expensive as well as unnecessary to calculate 
local shape descriptor for every single point and match them 
directly. We should find some feature points that can reflect local 
feature around them.  

 

4.1 Extracting Keypoints 
Feature point detection is widely used in situations such as target 
matching, target tracking, and three-dimensional reconstruction. 
When modeling a targeted object, the target features are extracted 
from the model. Commonly used features include color, corner 
points, feature points, outlines, and textures. In the detection of 
feature points, the scale invariance, rotation invariance, and anti-
noise effect are often proposed, which are indicators for 
determining whether the feature points are stable or not. 

Desirable feature points must include but not limited to the 
following characteristics:  

1) Reflecting real distinctive point in the model;  
2) Accurate positioning performance;  
3) High repetition rate of detection; 
4) Robustness of noise;  
5) High computational efficiency 

 
According to the evaluation and comparison of some widely 

used  detectors in the survey of Kang Tombari et al. [15], some 
fixed-scale detectors can be considered to extract keypoints, such 

Figure 6: Extracted bone (red region)  
 

Figure 5: Mark the invalid connection  

Figure 4: Set proper threshold 



as Local Surface Patches (LSP) proposed by Chen and Bhanu [16], 
Intrinsic Shape Signatures (ISS) by Zhong [17], KeyPoint Quality 
(KPQ) by Mian et al. [18], Heat Kernel Signature (HKS) by Sun 
et al. [19]. These fixed scale detectors find different key points at 
a certain constant scale and provide it as a parameter of the 
algorithm. These detectors can be abstracted into two main steps. 
The main purpose of the initial optional step is to prune the input 
data by thresholding the quality metrics calculated for each point. 
Since great repeatability and efficiency are needed in rigid 
matching, we choose ISS to extract keypoints of our bone model.  

In order to describe a local feature around a point which 
belongs to an object moving in global coordinates, it is a good 
way to create a local coordinate around this point, which makes 
sure the local coordinate system also rotates with the object. This 
is how ISS works. The covariance matrix of the adjacent regions 
of each 3D point is calculated first, and the points whose largest 
eigenvalues differs much with its second largest eigenvalues are 
designated as features. Obviously, the eigenvalues in this case are 
geometrically significant. The size of the eigenvalues is actually 
the length of the ellipsoidal axis. The shape of the ellipsoid is an 
abstract summary of the distribution of neighboring points. If the 
points are densely distributed in a certain direction, the direction 
will be the first main direction of the ellipsoid, the sparse direction 
is the second main direction, and the normal direction is the 
sparsest one (only one layer), naturally it is the third main 
direction. 

As is shown in Figure 7, we extracted the keypoints of a 
fractured bone model using ISS algorithm. It marks distinctive 
points on the model and can represent the neighboring points.  

 

 
 

4.2 Calculating Feature Descriptor 
Keypoints are the most prominent points within certain range of 
local areas. To match a fragment with the template, we only need 
to find the correspondence of the keypoints respectively on the 
fragment and template. When two points are regarded as 
correspondent, it means that they are of the same position on the 
local coordinate and their neighboring structures are similar. Since 
it is hard to directly figure out the local position of a specific point, 

comparing the neighboring structure becomes a feasible method. 
Therefore, we need a proper local feature descriptor. 

To adapt to geometric diversity between the fragment and 
template, we prefer a descriptor that can reflect the distribution of 
points around the keypoints.  

Spin image [21] counts distribution histogram of the 
neighboring points in the local cylindrical coordinate. The discrete 
process smooths the effect of each point by means of bilinear 
interpolation, and the descriptor has a certain anti-noise capability. 
The final spin image often needs a normalization step, which is 
obtained by dividing the maximum pixel value in the spin image. 
This step makes the spin map descriptor have a certain ability to 
resist changes in resolution. But the coordinate system is 
dependent on the normal vector of the feature points, which is 
prone to noise interference. And it does not consider the positional 
information of the field points, making the specificity lower. 

3D shape context [22][23] extends from 2D shape context. It 
takes the normal vector of the feature point as the north pole of its 
spherical neighborhood, and then the regions are divided in the 
direction of radial, longitude, and latitude. Then the sum of the 
values of the weighted points that fall into each region is counted. 
But it performs poorly in the presence of background or noise.  

In our work, we choose the SHOT (the Signature of Histograms 
of OrienTations) descriptor [24][25], it is a robust and specific 
descriptor that combines geometric distribution information with 
histogram statistics. For the SHOT, LRF (local reference frame) is 
established based on the information of the feature point 
neighborhood. The spherical neighborhood of the feature points is 
divided into regions in the radial direction (inside and outside 
spheres), longitude (just like time zone), and latitude direction 
(south and north hemispheres) as Figure 8. In this way, the sphere 
is radially divided into two parts, longitude divided into eight, 
latitude is divided into two, thus 32 small areas in total.  

 

 
 
The distribution of the cosine of the angle between the normal 

vector and the normal vector in each small area is calculated. The 
cosine value is divided into 11 bins (Figure. 9), so the length of 
SHOT descriptor is 32*11=352.  

For each fragment 𝐹𝐹𝑖𝑖  and template T, we respectively extract 
their keypoints  and accordingly compute the descriptor 
D(p), D(q), where p ∈ 𝐹𝐹𝑖𝑖 ,𝑞𝑞 ∈ 𝑇𝑇. 

Figure 8: LRF (local reference frame) 

Figure 7: Keypoints of a fractured bone model 



 
 

 

5 ALIGNING PIECES WITH TEMPLATE 
Up to now, we have got the descriptor for all keypoints of 
fragments and template. Next, what we need to do is to find the 
correspondence between them. Specifically, for p ∈ 𝐹𝐹𝑖𝑖 , 𝑞𝑞 ∈ 𝑇𝑇, if  

1) Dis(p, q) = |D(p) − D(q)| < δ𝐷𝐷.  
2) For a fixed p, q ∈ T makes Dis(p, q) smallest 

 
then this pair (p, q) is seemed to be correspondent (δ𝐷𝐷 = 0.05 in 
our experiments), we add them into the match list M. As is shown 
in Figure 10, it may happen that some nonconforming pairs are 
added, because p and q are essentially 352-dimensional vectors, 
we simply match them according to mean quadratic deviation. 
Therefore, there needs to be a correspondence rejection. There are 
some effective refining methods like forward search [8], voting 
[26], graph matching [27], Since the size of set M is quite big and 
they will cause large amount of computation, we refer to 
RANSAC [28] instead. RANSAC stands for "RANdom SAmple 
Consensus". The input of this algorithm is a set of observations 
data (often containing large noise or inefficiency), a parametric 
model for interpretation of the observations, and some credible 
parameters. RANSAC achieves the goal by repeatedly selecting a 
set of random subsets in the data. Therefore, it has a certain 
probability to get a reasonable result, and in order to improve the 
probability, we must increase the number of iterations.  
 

 

 
When refining the correspondence and aligning 𝐹𝐹𝑖𝑖  with 𝑇𝑇, we 

randomly choose three pairs (𝑝𝑝1, 𝑞𝑞1), (𝑝𝑝2, 𝑞𝑞2), (𝑝𝑝3,𝑞𝑞3) ∈ M . As 
we only consider rigid transformation, we can accept these three 
pairs if the Euclidean distance between two points on 𝐹𝐹𝑖𝑖 is similar 
to the parallel two points on 𝑇𝑇, namely 

1) | ∥ 𝑝𝑝1𝑝𝑝2 ∥ − ∥ 𝑞𝑞1𝑞𝑞2 ∥ | < δ𝑝𝑝 
2) | ∥ 𝑝𝑝2𝑝𝑝3 ∥ − ∥ 𝑞𝑞2𝑞𝑞3 ∥ | < δ𝑝𝑝 
3) | ∥ 𝑝𝑝3𝑝𝑝1 ∥ − ∥ 𝑞𝑞3𝑞𝑞1 ∥ | < δ𝑝𝑝 
(δ𝑝𝑝 = 1𝑚𝑚𝑚𝑚 in our experiments) 
Through several iterations, we can find at least three pairs 

meeting our requirements. With the pairs, we need to estimate the 
transformation 𝑇𝑇𝑖𝑖  for every fragment 𝐹𝐹𝑖𝑖 . The transformation 𝑇𝑇𝑖𝑖  is 
composed of translation t and rotation R. For each fragment, we 
calculate a pair of t and R to make the mean square error 

e(F, T) = �(R𝑝𝑝𝑖𝑖 + t − 𝑞𝑞𝑖𝑖)2
n

i=0

 

as small as possible using SVD decomposition method. Finally, 𝑇𝑇𝑖𝑖 
is applied to each 𝐹𝐹𝑖𝑖 so that fragments can be aligned with 
template.  
 
 

6 EXPERIMENTAL RESULTS 

We designed a system to implement our method and examine it 
with series of CT data obtained by computed tomography scanner. 
The pipeline of our system is presented as Figure 2. For all the 
three cases, our system is able to reassemble the fragment and 
generate acceptable results. To evaluate the matching error, we 
define  

ε =
1
𝑛𝑛
� ∥ T(pi)−qi ∥
n

i=0

 

(𝑇𝑇(𝑝𝑝𝑖𝑖) represents the point 𝑝𝑝𝑖𝑖 applied transformation 𝑇𝑇) 
 
We first tried a shin bone from a female patient and reconstruct 

the bone model from her CT data (Figure 11(1)). As we can see, 
the bone is broken into four parts including large fragments and 
tiny ones. We reassembled them with an error of ε = 6.21 (Figure 
11(2)). 

 

Figure 10: Mismatch of the keypoints  
      

 

Figure 9: Distribution histogram  

 (2). reassembled shin bone  

 Figure 11 

(1). fractured shin bone  



 
Then we worked on a thigh bone (as shown in Figure 12(1)), 

which comes from a female patient. The thigh bone is broken into 
five parts. Since the patient suffers from osteoporosis, the femoral 
head and lateral epicondyle are eroded, which may increase the 
level of difficulty. The body of femur is lack of prominent areas, 
so when extracting ISS keypoints we need to set the sample 
resolution lower to get as more keypoints as possible. The result is 
shown in Figure 12(2) and error ε = 6.89. 

To look for more challenges, we tried to reassemble a broken 
male cranial bone as shown in Figure 13(1). It contains various 
structures, making it harder to match the feature. Still, we 
managed to reassemble it with acceptable error as Figure 13(2).  

 
Our program is run on a PC with 2.7 GHz Core i5-6400 CPU 

and 8G RAM. The results of these three experiments are 
documented in the following table. Nf is the number of fragments, 
Np is the number of points, Riss is the radius of ISS (millimeter), 
Rshot is the radius of SHOT (millimeter), Tiss is the time of 
extracting keypoints (millisecond), Tmatch is the time of 
matching pieces (millisecond) and E is the matching error. 

 

 
To extract enough keypoints, we should set the radius of ISS 

relatively small. However, as the number of keypoints grows, it 
becomes more computationally complex to matching the features. 
Therefore, we need make tradeoff between them so that the 
computation process can be both effective and efficient. 

 
Limitations. When the fragments become pretty small, the 
alignment results are not very satisfactory. In Figure 14, we try to 
align a small piece (containing 193 vertexes, 483 edges, 308 faces) 
of a thigh bone to the template. However, keypoints of the small 
piece are paired with keypoints located in two ends of the 
template, which is apparently incorrect.  

As is mentioned above, feature descriptors reflect the local 
structure and points distribution around the keypoints through 
counting points and calculating angles in divided areas. When the 
scale of the piece becomes too small, it can’t hold enough points 
and prominent features to identify itself.  

This happens due to the lack of geometric information, which 
means it is hard to directly find a correspondent region on the 
template according to the shape. We can consider placing it after 
all the other fragments are properly arranged. 
 

 
 
 
 

 
 
 
 

7 CONCLUSION 
This paper presents a complete pipeline of automatically 
reassembling fractured bones, which can provide some references 
to surgeon in orthopedic surgery. We introduce the way to create 
3D model from CT image, extract the prominent points, analyze 
the structure and find correspondence among them. Through a 
series of experiments, our method is proved to be effective and 
robust in reassembling fractured bones while there are still 
limitations. 

Bones Nf Np Riss Rshot Tiss Tmatch E 

shin  4 18642 1.5 5 12888 145362 6.21 

thigh  5 24282 1.5 6 11518 376850 6.89 

cranial  5 18216 1.8 5 18208 99931 2.41 

Figure 14: Aligning very small piece  

 (1). fractured cranial bone  (2). completed cranial bone 

Figure 13 

(2). completed thigh bone  

Figure 12  

 (1). fractured thigh bone 



In the future, we expect to combine our system with the surgical 
restoration instrument. Our system computes the translation and 
rotation of each fragment and passes the transformation parameter 
to the instrument, so that the surgeon can obtain more help and 
further reduce the chance of making mistakes to lower the surgery 
risks. 
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