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Neurophysiological and Subjective Analysis of VR Emotion
Induction Paradigm
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Fig. 1. An overview of our framework for VR emotion induction and analysis. (a): The expected emotional state and emotion induction
materials; (b): The experiment set-up; (c): The subjective and neurophysiological data process and analysis.

Abstract—The ecological validity of emotion-inducing scenarios is essential for emotion research. In contrast to the classical passive
induction paradigm, immersive VR fully engages the psychological and physiological components of the subject, which is considered
an ecologically valid paradigm for studying emotion. Several studies investigate the emotional responses to different VR tasks or
games using subjective scales. However, little research regards VR as an eliciting material, especially when systematically analyzing
emotional processes in VR from a neurophysiological perspective. To fill this gap and scientifically evaluate VR’s ability to be used as
an active method for emotion elicitation, we investigate the dynamic relationship between explicit information (subjective evaluations)
and implicit information (objective neurophysiological data). A total of 28 participants are enlisted to watch eight VR videos while their
SAM/IPQ scores and EEG data are recorded simultaneously. In ecologically valid scenarios, the subjective results demonstrate that
VR has significant advantages for evoking emotion in arousal-valence. This conclusion is backed by our examination of objective
neurophysiological evidence that VR videos effectively induce high-arousal emotions. In addition, we obtain features of critical channels
and frequency oscillations associated with emotional valence, thereby validating previous research in more lifelike circumstances.
In particular, we discover hemispheric asymmetry in the occipital region under high and low emotional arousal, which adds to our
understanding of neural features and the dynamics of emotional arousal. As a result, we successfully integrate EEG and VR to
demonstrate that VR is more pragmatic for evoking natural feelings and is beneficial for emotional research. Our research has set a
precedent for new methodologies of using VR induction paradigms to acquire a more reliable explanation of affective computing.

Index Terms—Emotion induction, Virtual Reality, Neurophysiological analysis, Electroencephalogram

1 INTRODUCTION

A widely held belief in psychology is that an emotional episode involves
simultaneous changes in multiple psychological and physiological com-
ponents [1]. Specific qualitative emotional states (excitement, fear,
depression, etc.) are defined by particular changes in six emotional
components: cognitive, motivation, physiological, behavioral, experi-
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ential (feeling), and a regulation component [2]. Appraisal theory is an
emotion-based causation theory based on the emotional components
and has been highlighted for its importance in the emotion framework
by previous studies [3, 4]. According to this theory, the cognitive
component is the primary driver of changes in the other emotional com-
ponents. When confronted with a situation, one should first assess the
issue before making the psychological and physiological changes [5].
Classic emotion-induction paradigms (such as watching pictures/videos
or listening to music), on the other hand, rely on passive emotion induc-
tion in the laboratory, which has a large gap with real-world scenarios
and can not fully engage the psychological and physiological com-
ponents of the subject [6]. These paradigms do not entirely adhere
to appraisal theory and lack ecological validity. As a result, eliciting
strong and multi-component emotions is difficult, impeding understand-
ing of emotional processes. An ideal emotional induction paradigm
would immerse subjects in a more dynamic and realistic environment
that could be modified based on their appraisal while engaging psy-
chological and physiological subsystems more meaningfully. VR is
one potential medium that fits these requirements and remedies the gap
between the laboratory and real-world environments.

As an emerging technology, VR can provide complex virtual en-
vironments with high immersion and realism while allowing for ex-
perimental control. It immerses the user entirely into the created en-
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vironment, potentially enhancing the user’s emotional experience [7].
In a virtual environment, emotions can be evoked more naturally and
realistically [8]. The combination of VR and emotions is beneficial in
the fields of entertainment, education, and psychotherapy [9]. Due to
its relatively high ecological and construct validity, VR could be a good
solution to the emotional induction paradigm.

By analyzing subjective scales, current researches show that VR can
change users’ emotional responses [10]. However, most of these stud-
ies concentrate on the emotional effects of various VR tasks or games.
There have been few studies regarding VR as an eliciting material due
to the rarity of VR-based emotion-evoking materials, especially the
scarcity of using objective neurophysiological data to study emotional
processes in VR systematically. It is worth objectively exploring the
ability of VR as an emotion-inducing material by investigating the
relationship between explicit information (arousal and valence ratings)
and implicit information (features of neurophysiological signals corre-
sponding to arousal/valence). On the other hand, previous studies have
shown the variety of physiological signals and subjective scales under
different emotions [11,12]. Both neurophysiological signals and subjec-
tive scale ratings are important for emotion evaluation. Uncovering the
connection between these two data types is essential for understanding
the different emotional states reflected by neurophysiological signals.

In this paper, we aim to explore the great potential of the VR emotion
induction paradigm by analyzing the dynamic relationship between
subjective and objective data obtained throughout participants’ VR
movie watching experiences. For subjective data, we adopt the Self-
assessment Manekin (SAM) and Igroup Presence Questionnaire (IPQ)
to measure participants’ emotional feelings and presence in a virtual
environment. EEG data is collected as objective information because
it intuitively reflects an individual’s emotional activity [13]. The EEG
analysis enables us to provide an objective and accurate explanation
of users’ varied emotional fluctuations from a neurophysiological per-
spective. Furthermore, we decode the brain regions and EEG features
related to emotional arousal by leveraging the high ecological validity
of immersive VR with the goal of learning more about the association
between emotional arousal and specific brain regions, specifically fill-
ing the gap between hemispheric asymmetry and emotional arousal.
This can provide improved brain models and extend prior findings [14]
on the neurophysiology of emotion toward real-world scenarios and
applications. The contributions of this study are as follows:

• We set a precedent by using VR videos to investigate the EEG
features of diverse emotional states systematically, demonstrat-
ing the potential power of VR as stimulus material for emotion
research from a neurophysiological perspective.

• We discover the crucial brain regions and frequency oscillations
associated with emotional valence and arousal. This finding
inherits previous conclusions and verifies them in naturalistic
environments. It is, thereby, a critical step to extend emotion
research towards real-world neuroscience.

• Due to the unique properties of immersive VR of inducing high-
arousal emotions, we find there is hemispheric lateralization of α
waves in occipital regions for high-arousal emotions, which can
be a valuable study and bring new insights for emotional arousal
in affective computing.

2 RELATED WORKS

We begin by discussing existing research on classic emotion induction
paradigms and the issues that motivated our research. Then we investi-
gate the advantages of VR and explain why it is expected to become
a fundamental tool for emotion research. Finally, we go through the
history of neurophysiological signals as well as the present status of
emotion induction research in an immersive VR environment.

2.1 Classic Emotion Induction Paradigms
An effective emotion induction paradigm could produce the subject’s
intended emotional states, which is crucial for studying emotion pro-
cesses. According to the experimental environment, emotion induction

paradigms can be divided into the field or laboratory. According to
the induction scenarios, they can also be divided into active (the sub-
ject actively engages in the emotion induction scenario) or passive
(the subject passively faces various emotion induction stimuli). Up
to now, passive emotion induction in the laboratory has been widely
used [15]. According to the presentation of sensory channels, the
selected emotion induction materials can be classified into visual, audi-
tory, olfactory, and multi-channel stimuli. Visual stimuli are the most
commonly used method, presenting emotionally colored text or pictures
to the subjects [16]. By far, the National Institute of Mental Health
(NIMH) has established relatively complete libraries of standard stimu-
lus materials, such as Affective Norms for English Text (ANET) [17]
and the International Affective Picture System (IAPS) [18]. NIMH
has also established International Affective Digital Sounds (IADS)
for auditory stimulation. Multi-channel stimulus generally refers to
video clips such as music videos and short videos. It combines a va-
riety of induction materials and has become one of the most popular
induction methods [19]. Researchers have published some affective
databases such as DEAP, MAHNOB-HCI, SEED, AMIGOS, and AS-
CERTAIN [6, 14, 19–22]. These paradigms have some specific benefits.
Experimenters can strictly control the presentation of stimulus mate-
rials and the experimental environment while measuring multimodal
data (such as physiological signals and facial expressions).

However, in the laboratory, the passive emotion induction paradigm
does not fully incorporate the component definition of emotion and
appraisal theory. The underlying neurophysiological mechanism of this
paradigm is the mirror-neuron mechanism. When observing another’s
activities, a person’s brain will also perform similar actions, and emo-
tion induction should be based on this principle. Therefore, rather than
an appraisal theory, the underlying causal model of the classic emotion
induction paradigm could be understood as the ”contagion” of emotion.
This is not a widely accepted theory of emotional causality [23]. Mean-
while, due to the passive form of the task, the subject’s psychological
and physiological subsystems cannot be fully mobilized. Because it
makes no sense to run away or avoid scary pictures on computer 2D
displays, the motive and behavioral components of emotion lose mean-
ing. To this end, some studies have found that subjects participate more
actively in video game scenarios, but the subject and the scenario are
still separated by the screen [24]. As a result, subjects are frequently
observers rather than participants, expressing their emotional reactions
through game avatars. To summarize, the classic emotion induction
paradigm lacks sufficient ”ecological validity”, resulting in a lackluster
emotional response.

2.2 VR Emotion Induction Paradigms

Unlike the classic emotional induction paradigm mentioned above, VR
could provide ecological validity scenarios that fully engage the psy-
chological and physiological components of the subject. Furthermore,
the subject and virtual scenarios will not be separated by the screen
and virtual avatar. The user can be completely immersed in a virtual
scenario and feel as if they are ”there”. Therefore, VR is considered
an effective measurement with a high level of ecological and structural
validity.

Among the current limited emotional science research, VR scenarios
are mostly used for psychotherapy. For example, psychologists fre-
quently used ”exposure therapy” to expose patients to situations that
make them feel anxious in order to reduce fear responses or anxiety
through repeated exposure [25, 26]. Some studies concentrated on how
virtual humans with different rendering styles or facial expressions
affect the user’s emotional state [27]. Although a few studies combined
VR scenarios with emotions, they do not refer to VR as an emotion
elicitation material. Cao et al. [28] generated three types of virtual
environments (i.e., interior, street, and park), each with three different
emotions (i.e., negative, neutral, and positive) induced by different
sounds and lighting effects. The researchers then compared the cog-
nitive activities of participants in a non-CVR (i.e., 2D monitor) and
a CVR (i.e., 3D monitor) environment (i.e., head-mounted display).
However, this study only explored the effects of different emotions on
cognitive activity in VR, not the changes in EEG features. Furthermore,
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it only looked at general positive and negative emotions rather than
studying the mechanism of emotion generation by following the frame-
work of emotions. There are also studies investigating how the amount
of interaction affects the sense of presence in the natural environment,
as well as its effect on arousal and valence of emotion [29]. However,
this work only used VR horror games to induce fear emotions (high
arousal and low valence), so the effectiveness of VR in eliciting other
emotions was not tested. In addition, these studies only used subjective
questionnaires to evaluate the effects of emotion induction. The subjects
have a hard time describing their emotions accurately and quantitatively.
Moreover, some subjects have no experience with self-description of
emotions during their first experiment. In fact, an important challenge
in psychology and clinical research related to emotions is how to find
an accurate and objective method for labeling emotion categories. Ob-
jective neurophysiological data, such as EEG and electrocardiogram
(ECG), which are not easy to disguise and contain more information,
can better reflect a person’s actual emotional state objectively and are
gradually applied in emotion research. However, very few VR emo-
tional studies used neurophysiological data to measure emotions, which
limits our understanding of how emotions work.

2.3 Neurophysiological of Emotion

EEG signals are primarily derived from brain neuron firing activi-
ties, which can be detected on the scalp by sophisticated collection
equipment. Due to its high time resolution and strong functional speci-
ficity, it has been valued by researchers and applied in VR in recent
years [30, 31]. There are five frequency bands in the EEG signal: δ
(1-4Hz), θ (4-7Hz), α(8-12Hz), β (13-28Hz), and γ (29-50Hz). Each
band corresponds to a different frequency that reflects different activity
states of the brain. Meanwhile, because emotion generation is closely
linked to various areas of the brain, changes in emotional state can
be monitored and analyzed by collecting EEG [32, 33]. A previous
study found that the central α power is inversely related to arousal [34].
For the low-frequencies, θ and α bands in the occipital region, the
increase in valence leads to an increase in power. Also, hemispheri-
cal asymmetry in the frontal lobe region is highly relevant to valence
and other emotional states. [35–38]. In addition, researchers focused
on stable emotional patterns that do not change over time [39]. They
discovered that the activation level of the temporal lobe region for
positive emotions is much higher in the β and γ frequency bands than
for negative emotions. The neural pattern of normal emotions has a
more obvious α-band response in the occipital and parietal regions.
The neural pattern of negative emotions has a more obvious δ -band
response in the parietal and occipital lobe regions and a higher γ-band
response in the frontal lobe.

According to the findings of the prior studies, the features of each
EEG band are closely related to various emotional states. However,
most current researches explored the effects of different tasks in VR on
the EEG. None of them conducted a systematic study of the changes in
EEG during VR experiences under different emotions. It is a challeng-
ing but significant task to extract specific EEG features as evaluation
indicators to quantify emotional changes during the VR experiences.

3 METHODS

We devise a within-subjects experiment to compare EEG features in
specific bands and subjective ratings under various emotional condi-
tions. We use EEG to investigate the emotional induction effect of VR
videos on the neurophysiological level, as well as to collect subjective
questionnaire scores while the subjects are watching VR videos. Fig.1
depicts an overview of the VR emotion induction and analysis of our
experiment. In this section, we will go over the experiment in great
detail.

3.1 Participants and Ethics

The recordings are made in a temperature-controlled laboratory setting.
This study includes 28 healthy volunteers aged 21 to 33 (M = 24.23,
SD = 4.15, 16 males and 12 females) with normal hearing, vision,
and mental health. All of the volunteers are college students with no

history of heart disease, neurological disease, or other emotionally-
related diseases. This investigation has been approved by the local
ethics committee.

(a) (b)
Fig. 2. EEG equipment and HMD used in our study. (a) is the subject
wearing both an EEG cap and an HTC Vive VR headset. (b) is the EEG
electrodes configuration for the current study. The red circles indicate
the channels we used.

3.2 Experiment Apparatus
Our experimental equipment consists of the following parts: a computer
(Intel Core i7 processor, GTX 2060 graphics card, and 16 GB RAM),
an HTC Vive Pro HMD for displaying VR videos. Each participant’s
interpupillary distance is measured and set. EEG signals are collected
by ANT Neuro equipment, which has a CE certificate as a medical
device and includes a cap with 64 electrodes. Electrode placement
follows the 10/20 system. Besides, to prevent the HMD from exerting
pressure on the front-central electrodes, a lateral elastic band is used to
fix the HMD while the upper elastic band is loose. In order to compare
with the conclusions of previous research, we use the same electrode
configuration with a total of 32 EEG channels. It agrees with two
well-known emotion studies: the DEAP and MAHNOB-HCI datasets.
The EEG electrodes configuration and HMD are shown in Fig. 2. All
electrodes are referenced to CPz and grounded to the forehead. In order
to ensure the quality of EEG signals, we fill the electrodes on the cap
with non-abrasive gel, and the electrode impedance should be less than
5kΩ during the experiment.

3.3 Stimuli Selection
Due to the lack of necessary expertise, unavailability of gold standard
equipment, and proper controllable environment, there is rarely appro-
priate VR-based material on affective computing [40]. Therefore, the
stimulus used in our experiment is selected from a Stanford immersive
VR video public database [41]. The dataset, which includes 73 immer-
sive VR clips, is currently the only public VR video dataset available.
Each video has a valence and arousal score that is distributed in the Rus-
sell arousal-valence model’s four quadrants [42]. The four quadrants
in this arousal-valence plane (AV plane) are low arousal/low valence
(LALV), low arousal/high valence (LAHV), high arousal/low valence
(HALV), and high arousal/high valence (HAHV). For the LAHV and
LALV quadrants, we choose two videos with the scores closest to the
extreme corner of the quadrant, respectively. Due to the lack of high
arousal and low valence videos in this dataset, we select 15 horror
videos with the highest view count from YouTube. Each video has been
rated on a discrete 9-point scale for valence and arousal by at least 16
volunteers. For each video x, we calculate the normalized arousal and
valence scores by dividing the average score with the standard deviation
(µx/σx). We also select two videos close to the extreme corner of the
quadrant on the AV plane. The high arousal and low valence videos
applied in this paper are available online 1, 2. In addition, for the
video of the HAHV quadrant, titled speed flying and tightrope walking,
all subjects consider that the video would cause severe cybersickness,
which may have a significant impact on EEG power [43]. Therefore, to
eliminate cybersickness in the experiment, we choose The Blu–Whale
Encounter, a VR game available on Vive’s Steam platform. This game

1https://www.youtube.com/watch?v=ViLReDIvk_A
2https://www.youtube.com/watch?v=C0Rl4m38gOU
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(a) LALV (b) HALV (d) HAHV(c) LAHV

Fig. 3. Sample screenshots of participants and VR videos with different emotions they watched: The emotions corresponding to the four columns
are LALV, HALV, LAHV, and HAHV. Each column from top to bottom is the Nepal Earthquake Aftermath, the Earthquake Site, the Real Run, the
Conjuring 2, the Malaekahana Sunrise, the Mountain Stillness, the Whale Encounter, and the Reef Migration.

is more like a movie-watching experience, as it is relatively passive
and straightforward. It has been proven to induce high arousal and
valence induction while also providing players with a vivid first im-
pression of VR [44]. It contains three fragments, and we choose two
of them as stimulus materials. In the end, as shown in Fig.3, we select
eight VR videos, each with a distinct title, video screenshot, and its
corresponding quadrant.

3.4 Measurements
We have measured and compared these two types of data to quantify and
verify the effectiveness of VR videos as emotion elicitation materials.
For subjective data, we adopt the 9-point SAM scale, which is widely
used to measure the valence, arousal, and dominance associated with a
person’s affective reaction [45]. The valence scale ranges from unhappy
to happy, and the arousal scale ranges from calm to excitement. The
level of dominance varies from submissive (”out of control) to dominant
(”in control”). In addition, since presence has been proved to be an
essential factor in emotional induction and is the core psychological
structure that describes the VR experience, we also record IPQ scores to
measure the sense of presence experienced in a virtual environment [46].
It consists of 14 items, which can measure users’ spatial presence,
involvement, and sense of realness.

For neurophysiological data, EEG includes time series of multiple
channels, which correspond to the measured values of different posi-
tions in the cerebral cortex. However, noises such as body movements,
VR displays, electrooculography (EOG), ECG, and electromyography
(EMG) can easily interfere with EEG signals [47]. To reduce the pos-
sible interference caused by body movements, external noises, and
equipment discomfort, we instruct the subjects not to move their bodies
and heads as much as possible when viewing VR videos. Although
this may limit the subject’s experience to some degree, subjects re-
main in a virtual environment isolated from the outside world, are
not disturbed by other people or noises. They can concentrate on
the emotion induction experiment. In addition, to obtain clean and
high-quality EEG signals for frequency-domain feature extraction, we
adopt EEGLAB for physiological signal processing. EEGLAB is an
open-source Matlab toolbox that provides powerful algorithms for EEG
preprocessing, feature extraction, and emotion recognition [48]. Specif-
ically, we adopt the following steps in our experiments: First, we use
a high sampling frequency of 512Hz to acquire raw EEG data, which
can filter out the interference caused by monitors (50Hz to 60Hz) and
VR HMDs (90Hz). Then, the signal is resampled to 128Hz (via the
’pop resample.m’ method in EEGLAB) and re-referenced to the linked
papillae (electrodes M1 and M2). Second, the signal is filtered with a
band-pass from 4 to 47Hz to minimize the introduction of artifacts(via
FIR filter in EEGLAB). Third, a visual inspection is conducted to
remove abnormal signals with amplitudes beyond ±100 (µν), since
signals with such large amplitudes are no longer caused by cognitive
activity. Fourth, we adopt Independent Component Analysis (ICA), a
blind source separation (BSS) based method, to remove artifacts while
retaining as much information as possible. We decompose the entire

Table 1. 14 pairs of hemispheric asymmetry electrodes used in our
experiment.

Pair No. 1 2 3 4 5 6 7

Left Fp1 AF3 F7 F3 FC5 FC1 T7
Right Fp2 AF4 F8 F4 FC6 FC2 T8

Pair No. 8 9 10 11 12 13 14

Left C3 CP5 CP1 P7 P3 PO3 O1
Right C4 CP6 CP2 P8 P4 PO4 O2

EEG signal set into 32 independent components (ICs). These ICs are
determined as artifacts or neural activity components related to emotion
by a semi-automatic method using the SASICA software in EEGLAB
and visual inspection by experts [49]. Finally, we remove an average
of 9.37 components per subject and obtain pure EEG signals for the
following feature extraction step.

Since the most significant feature related to emotion usually exists
in the frequency domain, and different frequency bands can reflect dif-
ferent brain activities [50]. We focus on extracting and comparing the
frequency domain features of EEG signals under different emotions, in-
cluding Power Spectral Density (PSD) and Hemispherical Asymmetry.
The PSD defines how the power of a signal is distributed over frequency
and is widely used in the field of emotion recognition [51]. In this paper,
for θ , α , β , and γ bands, the PSD is calculated using Welch’s method
in Python-MNE. The welch method allows data segments to overlap
and thus the variance characteristics can be well improved. The over-
lapping of segmented data reduces the irrelevance of each segment [52].
Specifically, the signal is first divided into n segments that allow over-
lapping, then each segment of data is windowed before computing the
PSD and finally calculated the PSD average of multiple-segmented
data. We use a Hanning window of 256 samples with an overlap of 128
samples. Hanning window can improve spectral distortion caused by
the rectangular window [53]. Besides, to minimize stimulus-unrelated
power over time, we perform a baseline correction. We use the fixed
stage of five seconds before each video as the baseline, and the power
of the baseline stage is subtracted from the power of the trial. Finally,
these PSD values are averaged over the θ (4 - 7 Hz), α (7 - 13 Hz), β
(14 - 29 Hz), and γ (30 - 47 Hz) bands, as the EEG power used in this
research. We also calculate the differences between the PSDs of 14
pairs of hemispheric asymmetry electrodes. The details of the 14 pairs
of electrodes are shown in Tab. 1.

3.5 Experimental Setup

All subjects voluntarily took part in the study and were carefully in-
formed about the objectives, experimental procedures, and risks. Each
participant was required to refrain from regular medication, alcohol, or
caffeine the day before the experiment and refrain from strenuous phys-
ical activity for 48 hours before the test sessions. Before experiments,
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Fig. 4. (a) The study overview in our experiment. (b) Experiment process for each trial.

volunteers subscribed to a written informed consent form. They were
also told that they could stop at any time without any consequences.
Meanwhile, the experimenter explains the emotion scales used and how
to fill in the self-assessment form. Next, an EEG cap was placed and
checked the quality of signals. Finally, the experimenter left the room
and started recording.

One baseline stage and eight trials make up the experiment. After the
experiment began, the subjects were instructed to sit quietly in the chair
for five minutes. Additionally, the subject’s SAM score was recorded as
a baseline measurement. The eight VR videos were then shown in eight
trials in random order. Each trial consists of three steps. A fixation cross
was displayed for the first five seconds. The participants were then
assigned to watch one of eight virtual reality videos at random. After
watching each video, they were asked to rate their emotions and sense of
presence using the SAM and IPQ questionnaires. To avoid the pressure
artifacts of wearing the VR HMD repeatedly and disturbing the position
of the EEG electrodes, the SAM and IPQ questionnaires are displayed
on a virtual screen. This allows subjects to fill out the questionnaire
without removing the VR HMD. It takes about five minutes to complete
the rating and recovery process. Subjects can also recover from the
previous emotion-induced stage during this period to avoid mental
fatigue. Furthermore, the videos should be selectively crafted to reduce
the discomfort caused by wearing the VR device while effectively
eliciting the desired emotion. As a result, each VR video is about three
minutes and thirty seconds long. The experiment takes about an hour
to complete. The study overview and experimental process of each trial
are shown in Fig. 4.

3.6 Statistical Analysis

All analyses are conducted at a 0.05 level of significance. The normality
of all data is tested using the Shapiro-Wilk test. We use non-parametric
Wilcoxon signed-rank tests to check if the arousal ratings of video stim-
uli induced different valence ratings, also with the statistical differences
of presence under different emotional conditions. A paired-samples
t-test is used to compare the EEG power of θ , α , β , and γ bands be-
tween high-arousal/low-arousal or high-valence/low-valence emotions.
Due to the small sample scale, we conduct the two-way repeated mea-
sures ANOVA to investigate the hemisphere asymmetry effect, with
two within-group factors of emotion (high-arousal/low-arousal or high-
valence/low-valence) and hemisphere (left/right) for EEG power. We
also perform simple main effects analysis if any interaction among
factors was found. Greenhouse-Geisser is used to correct the degrees
of freedom if the assumption of sphericity is violated by Mauchly’s
spherical test. Multiple comparisons are corrected with the Bonferroni
correction. All statistical analyses are conducted using SPSS 22.0.

4 RESULTS

This section shows the results of subjective scale and neurophysiologi-
cal analysis.

4.1 Analysis of Subjective SAM Ratings

We list the average ratings of participants’ arousal, valence, and domi-
nance in response to eight video stimuli over the AV plane. As shown in
Fig.5, the Nepal Earthquake Aftermath (M=4.4, SD=2.1 for A; M=3.1,
SD=1.3 for V; M=5.4, SD=1.6 for D) and the Earthquake Site (M=4.8,
SD=1.8 for A; M=3.2, SD=0.7 for V; M=5.4, SD=1.4 for D) belong
to the LALV quadrant. The Real Run (M=8.0, SD=2.7 for A; M=2.3,
SD=0.3 for V; M=3.8, SD=1.2 for D) and the Conjuring 2 (M=8.2,
SD=1.9 for A; M=2.0, SD=0.3 for V; M=3.5, SD=1.0 for D) belong to
the HALV quadrant. The Malaekahana Sunrise (M=4.1, SD=1.3 for
A; M=6.7, SD=1.7 for V; M=7.0, SD=2.3 for D) and the Mountain
Stillness (M=4.0, SD=0.9 for A; M=6.8, SD=2.1 for V; M=6.6, SD=2.0
for D) belong to the LAHV quadrant. The Whale Encounter (M=7.4,
SD=2.5 for A; M=6.6, SD=1.7 for V; M=5.4, SD=1.1 for D) and the
Reef Migration (M=7.2, SD=1.6 for A; M=7.8, SD=2.1 for V; M=6.5,
SD=1.3 for D) belong to the HAHV quadrant.
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Fig. 5. The distribution of 8 VR videos in the valance-arousal plane.

Participants may confuse these three scales as a result of their habits
or when they are tired. To analyze the inter-correlation between the
three scales of valence, arousal, and dominance, we calculate Pearson
correlation coefficients of them. As we can see from Tab. 2, the results
show a strong positive correlation between dominance and valence.
However, the correlation between valence and arousal is very weak.

Due to the non-normality of the data revealed by the Shapiro-Wilk
test, we perform the non-parametric Wilcoxon signed-rank tests to ver-
ify that the subjects can distinguish the emotions of the four quadrants
well. Because each quadrant has two videos, we draw the average
SAM ratings of a pair of videos for each quadrant. As shown in Fig. 7,
the results show that valence ratings differed very significantly for HA
video stimuli (p < 0.001), also differed very significantly for LA video
stimuli (p < 0.001). Conversely, we find arousal ratings differed very
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Fig. 6. The correlation between the global arousal score of eight videos and the correlation between presence and arousal of videos.

Table 2. The inter-correlation between three scales of valence, arousal,
and dominance (* = p < 0.05).

Scale Valence Arousal Dominance

Valence 1 0.12 0.43*
Arousal 1 0.19

Dominance 1

significantly for HV video stimuli (p < 0.001), also differed signif-
icantly for LA video stimuli (p < 0.01). For dominance rating, the
results show that there is a significant difference between LV and HV
video stimuli (p < 0.001). In particular, emotion induction worked
quite successfully for high arousal conditions, with the corresponding
valence ratings distributed in two extremes (2.2 for HALV and 7.23 for
HAHV, respectively).
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Fig. 7. The mean ratings of participants for valence, arousal, and domi-
nance for the emotion of the four quadrants (LALV, HALV, LAHV, HAHV).
The rating is averaged per subject and per condition.

4.2 Analysis of Subjective IPQ Ratings
We then analyze the statistical differences of presence under different
emotional conditions. We use the non-parametric Wilcoxon signed-
rank tests due to the non-normality of the data revealed by the Shapiro-
Wilk test. As shown in Fig.8, there are significant differences in the
IPQ ratings for involvement, sense of realism, and spatial presence
between high arousal/low arousal. Specifically, HA video stimuli has
significantly higher involvement (p < 0.01), sense of realism (p <
0.01), and spatial presence (p < 0.05) compared with LA video stimuli.
In addition, we find no significant differences in these three scales
between HV and LV.

4.3 The Relationship between Presence and Arousal
To explain the mechanism behind VR-induced high-arousal emotions,
we analyze the correlation between SP, INV, REAL, valence, and
arousal ratings of eight videos in this section. We calculate the av-
erage of five ratings from 28 subjects for each video. Then, the Pearson
correlation coefficients of the average rating of eight videos are calcu-
lated. The result is shown in Tab. 3, there is no significant correlation
among valence and INV (r = -0.143), REAL (r = -0.167) and SP (r =
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Fig. 8. The mean ratings of subjects for involvement (INV), sense of
realness (REAL), and spatial presence (SP) for the emotion of the four
quadrants (LALV, HALV, LAHV, HAHV). The rating is averaged per subject
and per condition.

Table 3. Correlation coefficients between the mean ratings of participants
for INV, REAL, SP, Valence and Arousal (* = p < 0.05).

Scale INV REAL SP

Valence -0.143 -0.167 -0.395
Arousal 0.619* 0.643* 0.826*

-0.395). However, a strong linear relationship exists between arousal
and INV (r = 0.619), REAL (r = 0.643), SP (r = 0.826).

We also calculate the Pearson correlation coefficient between arousal
and presence ratings of 28 subjects for each video. We obtain eight
correlation coefficients for a total of eight videos. Then, we calculate
the correlation between the average arousal ratings of eight VR videos
and the correlation between the presence and arousal of videos. As
shown in Fig.6, for each video, the arousal scores rise with an increasing
correlation coefficient between arousal and INV (r = 0.690, p = 0.028),
REAL (r = 0.667, p = 0.031), SP (r = 0.810, p = 0.003), respectively.

4.4 Analysis of EEG Power Under Different Emotional
States

The EEG power of θ , α , β , and γ for each channel are calculated
for all subjects under high-arousal and low-arousal emotions. The
Shapiro-Wilk test indicates the data are normally distributed, so we use
the pair t-tests to compare the power between different emotions. As
shown in Fig. 9, for the θ band, low-arousal emotions have a higher
power in the prefrontal lobe than high-arousal one. The occipital and
parietal lobe activate more for low-arousal emotions than high-arousal
emotions in the α band. Low-arousal emotions in β band have a higher
power in the right lateral temporal lobe than high-arousal emotions. In
addition, the difference between the two emotions for the γ band is not
found. Specifically, we list and discuss the channels with significant
differences, as shown in Tab. 4. For the θ band, the paired-samples
t-test results show that significant differences are found for AF4 (p
<0.01) between HA (M = -0.55, SD = 0.34) and LA (M = 0.65, SD
= 0.42), FP2 (p < 0.01) between HA (M = -0.17, SD = 0.09) and LA
(M = 0.34, SD = 0.12), also exist for F4 (p < 0.01) between HA (M =
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Fig. 9. The EEG power of θ (4-7Hz), α (8-13Hz), β (14-29Hz), and γ (30-47Hz) over all subjects for high-arousal and low-arousal.

-0.43, SD = 0.28) and LA (M = 0.51, SD = 0.32). For the α band, we
find significant differences for Cz (p < 0.01) between HA (M = 0.07,
SD = 0.12) and LA (M = 0.87, SD = 0.45), FC1 (p < 0.05) between
HA (M = 0.59, SD = 0.33) and LA (M = 0.75, SD = 0.23), FC2 (p <
0.05) between HA (M = 0.55, SD = 0.23) and LA (M = 0.71, SD =
0.41), Oz (p < 0.05) between HA (M = 0.54, SD = 0.11) and LA (M =
0.64, SD = 0.39), O1 (p < 0.05) between HA (M = 0.81, SD = 0.36)
and LA (M = 0.67, SD = 0.33), also exist for O2 (p < 0.01) between
HA (M = 0.25, SD = 0.18) and LA (M = 0.60, SD = 0.40). Significant
differences are also found in β band for T8 (p < 0.05) between HA (M
= 0.47, SD = 0.27) and LA (M = 0.82, SD = 0.57), also exist for P8 (p
< 0.05) between HA (M = 0.51, SD = 0.44) and LA (M = 0.76, SD =
0.47).

Table 4. The channel list with significantly difference for high-
arousal/valence compared with low-arousal/valence (* = p < 0.05, ** = p
< 0.01).

Band Channel HA LA HV LV

θ
FP2** -0.17 0.34
F4** -0.43 0.51

AF4** -0.55 0.65
Pz* 0.60 0.38

α

Cz** 0.07 0.87
FC1* 0.59 0.75
FC2* 0.55 0.71
Oz* 0.54 0.64

O2** 0.25 0.60
O1* 0.81 0.67

FP1** 1.01 0.51
FP2* 0.65 0.58

β

T8* 0.47 0.82 0.50 0.69
P8* 0.51 0.76

T7** 1.12 0.81
FC5** 0.82 0.58
CP5* 0.79 0.58
FC6* 0.45 0.30
CP6* 0.40 0.49

γ

FC5** 0.78 0.21
T8** 1.03 0.47

CP6** 0.58 0.24
FC6** 0.81 0.33
T7** 0.94 0.28
P7** 1.21 0.43

CP5** 0.65 0.27

As shown in Fig.11, for each channel, we calculate the EEG power
of θ , α , β , and γ for all subjects under high-valence and low-valence
emotions. The Shapiro-Wilk test indicates the data are normally dis-
tributed. The results of pair t-tests show that for the θ band, the parietal
lobe activates more for high-valence emotions than the low-valence one.
For the α band, the left frontal lobe has higher power for high-valence
emotions than the low-valence one. For the β band, we find the lateral
temporal lobe has higher power for high-valence emotions than low-
valence emotions. Similarly, for the γ band, the lateral temporal lobe
activates more for high-valence emotions than low-valence emotions.
For the p-value results for the specific channels, as seen from Tab. 4,
for the θ band, the paired-samples t-test results show that significant
differences are found for Pz (p < 0.05) between HV (M = 0.60, SD =
0.28) and LV (M = 0.38, SD = 0.32). For the α band, FP1 (p < 0.01)
is found to have a significant difference between HV (M = 1.01, SD
= 0.68) and LV (M = 0.58, SD = 0.69). Meanwhile, FP2 (p < 0.05)
is found to have a significant differences between HV (M = 0.65, SD
= 0.38) and LV (M = 0.51, SD = 0.47). For the β band, significant
differences are found for T8 (p < 0.05) between HV (M = 0.50, SD
= 0.33) and LV (M = 0.69, SD = 0.48), T7 (p < 0.01) between HV
(M = 1.12, SD = 0.88) and LV (M = 0.81, SD = 0.76), FC5 (p < 0.01)
between HV (M = 0.82, SD = 0.66) and LV (M = 0.58, SD = 0.71),
CP5 (p < 0.01) between HV (M = 0.79, SD = 0.56) and LV (M = 0.58,
SD = 0.60), FC6 (p < 0.01) between HV (M = 0.45, SD = 0.28) and
LV (M = 0.30, SD = 0.47), also exist for CP6 (p < 0.01) between HV
(M = 0.40, SD = 0.55) and LV (M = 0.49, SD = 0.36). For the γ band,
significant differences are found for T7 (p < 0.01) between HV (M
= 0.94, SD = 0.87) and LV (M = 0.28, SD = 0.33), FC5 (p < 0.01)
between HV (M = 0.78, SD = 0.63) and LV (M = 0.21, SD = 0.29),
CP5 (p < 0.01) between HV (M = 0.65, SD = 0.88) and LV (M = 0.27,
SD = 0.45), T8 (p < 0.01) between HV (M = 1.03, SD = 0.53) and LV
(M = 0.47, SD = 0.29), FC6 (p < 0.01) between HV (M = 0.81, SD =
0.50) and LV (M = 0.33, SD = 0.44), CP6 (p < 0.01) between HV (M
= 0.58, SD = 0.63) and LV (M = 0.24, SD = 0.37), also exist for P7 (p
< 0.01) between HV (M = 1.21, SD = 0.95) and LV (M = 0.43, SD =
0.74).

4.5 Analyse of Hemisphere Asymmetry

As shown in Fig. 10, for 14 pairs of hemisphere asymmetric elec-
trodes, we calculate the significant differences in power of the left and
right electrodes for θ , α , β and γ bands under different emotional
states. In this section, only the hemisphere asymmetric effects that are
significantly below p < 0.05 are reported.

For HV and LV, the two-way repeated-measures ANOVA results
show that there is a significant emotion × hemisphere interaction effect
at FP1 (left) / FP2 (right) electrodes (F(1, 27) = 7.654, p = 0.041, η2

p
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Fig. 10. Hemisphere Asymmetry Effect under High-Arousal / Low-Arousal and High-Valence / Low-Valence.

= 0.663) on the α band. To investigate the interaction of emotion
× hemisphere, we also conduct the ANOVA with a within-factor of
hemisphere for each emotion. For HV video stimuli, the left hemisphere
evokes significantly higher activity than the right hemisphere (p < 0.01).
No hemisphere effect is found for the LV video stimuli. Meanwhile, the
main effects of emotion (F(1, 27) = 11.453, p = 0.034, η2

p = 0.089) and
hemisphere (F(1, 27) = 6.865, p = 0.033, η2

p = 0.774) at the FP1 and FP2
electrodes are also found. For the β band, we find a significant emotion
× hemisphere interaction effect at T7 (left) / T8 (right) electrodes
(F(1, 27) = 8.738, p = 0.013, η2

p = 0.578). Similarly, we also conduct
the ANOVA with a within-factor of hemisphere for each emotion to
investigate the interaction of emotion × hemisphere. For HV video
stimuli, the left hemisphere has significantly higher activity than the
right hemisphere (p < 0.05). No hemisphere effect is found for the LV
video stimuli. The corresponding main effects of emotion (F(1, 27) =
4.576, p = 0.038, η2

p = 0.398) and hemisphere (F(1, 27) = 16.875, p =
0.026, η2

p = 0.459) at the T7 and T8 electrodes are also found.
For HA and LA, the two-way repeated-measures ANOVA results

show that there is a significant emotion × hemisphere interaction effect
at O1 (left) / O2 (right) electrodes (F(1, 27) = 26.764, p = 0.009, η2

p
= 0.876) on the α band. To investigate the interaction of emotion
× hemisphere, we also conduct the ANOVA with a within-factor of
hemisphere for each emotion. For HA video stimuli, the left hemisphere
evokes significantly higher activity than the right hemisphere (p < 0.01).
No hemisphere effect is found for the LA video stimuli. Meanwhile,
the main effects of emotion (F(1, 27) = 6.734, p = 0.011, η2

p = 0.605)
and hemisphere (F(1, 27) = 15.467, p = 0.007, η2

p = 0.502) at the O1
and O2 electrodes are also found.

5 DISCUSSION

Our work aims to assess the potential of the VR emotion induction
paradigm, which is the primary basis for affective computing research.
Unlike previous studies that only used subjective scales, we have stud-
ied the relationship between subjects’ subjective and objective neuro-
physiological responses to find patterns of brain activity for specific
emotions. This section will summarize our findings and compare them
with previous studies, demonstrating the benefits and potential of VR
as a basic computing research tool.

5.1 Subjective Questionnaire

We select VR videos to elicit emotions in the four quadrants of Russell’s
arousal-valence model, and the projection of VR stimuli on the AV
plane is a C-shape (as shown in Fig.5). It is consistent with the previous
classic researches of the IAPS, IADS, DEAP and Ascertain [18,19,22].
Besides, the SAM scores of the participants in this study are consistent
with the Stanford immersive VR video public database. The low cor-
relation between valence and arousal also indicates that subjects can
distinguish these two important concepts well (as shown in Tab. 2). The
significant differences between the conditions in terms of the ratings of
valence and arousal in Fig. 7 prove the successful emotion elicitation
using VR elicitation material. In particular, VR has better performances
for high-arousal emotions, indicating the subjects experienced high-

intensity emotions in the VR ecological valid scenarios. The emotions
induced by low arousal and low valence stimuli are relatively unsuc-
cessful, which may have two reasons: (1) Subjects are more excited
when experiencing VR for the first time, making it difficult to induce
low arousal. (2) Subjects have a strong presence sense in VR scenarios,
since there is a strong correlation between presence and arousal, which
leads to a generally high level of arousal for subjects.

Besides, presence is an important evaluation indicator in the VR
experience as a mental state. It is generally regarded as a necessary
intermediary that allows the virtual environment to activate real emo-
tions [54, 55]. Many researchers believe that physiological arousal is
one of the main mechanisms that produce a sense of presence [56, 57].
Therefore, we have compared the changes in the sense of presence
under high and low arousal conditions, and our results back up this
theory. A significant difference has been found in SP, INV, and REAL
under these two conditions. By analyzing the correlation between INV,
REAL, and SP with arousal, we find a strong linear correlation among
them (r=0.619 for INV, r=0.643 for REAL, and r=0.826 for SP).

Similarly, the global arousal scores of VR videos and the correla-
tion between arousal and presence are positively correlated (r=0.690,
p=0.028 for INV, r=0.667, p=0.031 for REAL, and r=0.810, p=0.003
for SP). In other words, the higher the arousal, the stronger correlation
between arousal and presence, vice versa. This finding is consistent
with the conclusion of Freeman, which pointed out that only for high
arousal conditions there has an obvious positive correlation between
arousal and presence [58]. Therefore, we can conclude that the mecha-
nism of VR-induced emotion is linked to the subjects’ perception of
their presence during the VR experience.

5.2 EEG Pattern

We measure the variation of EEG power under different emotions
evoked by VR videos. The results show significant differences in EEG
power over different brain regions under the four quadrants of the
circumplex model. Based on the analysis of different EEG channels,
we find α band of the prefrontal region channels (FP1 and FP2), β
band of the lateral temporal region channels (T8, T7, FC5, CP5, CP6,
and FC6), γ band of the lateral temporal region channels (T8, T7,
FC5, CP5, CP6 FC6, and P7) have a higher power of high-valence
emotions than low-valence emotions. Previous neurological studies
have shown that β activity reflects emotional and cognitive processes,
which often appear when a person is thinking [59]. γ waves frequently
appear when people are nervous and excited [60]. Therefore, the power
of β and γ is generally increased when dealing with high-valence
emotions. This is consistent with previous studies [39, 61]. Both the
traditional and our VR emotion induction paradigms demonstrate that
α , β and γ waves are associated with emotional valence. Still, very
few studies on emotional arousal are due to the weak emotion evoked
by the traditional emotion induction paradigm. It’s thereby difficult to
reliably link arousal to stable EEG patterns in specific brain regions.
Based on our analysis of different EEG channels, we find channels in
the parietal regions (Cz, FC1, and FC2) and channels in the occipital
region (Oz and O2) have higher α power for low-arousal emotions than
for high-arousal emotions. Previous neurological studies have shown
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Fig. 11. The EEG power of θ (4-7Hz), α (8-13Hz), β (14-29Hz), and γ (30-47Hz) over all subjects for high-valence and low-valence.

that α activity reflects attentional processing, which often appears when
a person is relaxed and calm [59]. Our finding can be interpreted as
when participants are experiencing low-arousal emotions, they are more
relaxed and have a higher α power in the parietal and occipital regions.

We also analyze the hemisphere asymmetry effect induced by VR
videos. The results show that the brain has the properties of lateralized
activation when processing emotion in a VR environment. We find
only for high-valence emotions, significant differences in the power
of the β band in the temporal lobe of the left (T7) and right (T8)
hemispheres channel. This is consistent with previous studies [59].
However, no lateralization has been found for low-valence emotions.
There is also no lateralization in the γ band. Meanwhile, we find that
there is a lateralized activation of emotion in the frontal lobe. For high-
valence emotions, a higher α power of the left hemisphere channel
(FP1) is found compared with the right hemisphere channel (FP2),
while the opposite is observed for low-valence emotion. This finding
also matches previous research, proving a higher activation degree in
the left hemisphere under high valence emotions [62]. Although several
studies have shown the relationship between valence and hemispheric
asymmetry. However, for emotional arousal, the lateralization of brain
activation is still unclear and lacks relevant literature, especially in VR
scenarios. Therefore, our research fills this gap, and an interesting
finding is that the α band in the occipital lobe is also lateralized under
high-arousal emotions. Higher α power is found over the left channel
(O1) compared with the right channel (O2), but it is not found for low-
arousal emotions. We speculate that the reason for this phenomenon is
that during the VR experiment, the subjects concentrate on the visual
stimuli of the immersive scene, which leads the brain to generate more
attention and memory information. α waves are closely related to
attention and memory formation. As a result, the occipital lobe of
the brain has the characteristics of lateralization. In summary, the
mechanisms of emotional brain function and human emotion modeling
are still unclear. There are few studies combining VR and EEG to study
emotion. We hope to better understand the physiological mechanisms
behind human emotions using VR ecologically effective scenarios.

6 LIMITATION

Our current research still has some limitations given the exploratory
nature of this work. First of all, our dataset has a limited age distribu-
tion that exclusively collects EEG signals from college students, since
young pupils are more adept at experiments and more enthusiastic
about VR. We have currently done experiments with 28 subjects, with
detailed questionnaires, original data, and preprocessed data available.
In the future, our dataset will be strengthened by adding subjects’ EEG
data from a wider age group and shared for public research. Second,
subjects are not allowed to turn their heads excessively during the ex-
periment, which may affect their experiences. In the future, we will

conduct specific experiments to analyze how head movements affect
the quality of EEG signals and the accuracy of emotion recognition.
Various movement intensities (a combination of different movement am-
plitudes and speeds) will be helpful to explore the best head movement
intensity parameters in VR experiments. Third, previous studies have
demonstrated that VR can induce higher levels of emotional arousal
than traditional media by subjective scales [10]. Thus, due to the long
time experiment could cause excessive fatigue to the subject, reducing
the experimental effect, we only explored the validity of the VR emo-
tion induction paradigm without comparison with the traditional 2D
displays. Finally, since most artifacts such as EOG, ECG, and EMG
are dominant below 4 Hz and power line noise usually lies at 50 Hz,
while information at 4–47 Hz has the strongest emotional association
and dominates the field of affective computing [6]. To ensure the rigor
and correctness of this exploratory research and obtain a purer signal,
we carefully filtered out the δ and high γ bands. In future research, we
will further extract the features of δ bands for emotion recognition to
verify their validity.

7 CONCLUSION

In this paper, we provide new insights into the selection of emotion
evoked paradigms. We conclude that VR has a powerful ability to
make subject’s high sense of presence and evoke real emotions in a
more natural and realistic way, especially for high-arousal. We also
establish association maps of emotional states and related brain regions
and EEG features. In high-arousal emotions, the power of α waves is
found to be lower in the parieto-occipital regions than in low-arousal
emotions. High-valence emotions have more β and γ waves activity
in the temporal lobe than low-valence emotions. The hemispheric
asymmetry analysis result shows that α waves in prefrontal regions
and β waves in temporal regions have lateralized activation only for
high-valence emotions. In particular, since VR has the unique ability
to induce high-arousal emotions, we find α waves in occipital regions
have the properties of lateralized activation only for high-arousal emo-
tions, which extends the previous conclusions on the neurophysiology
of emotional arousal. These neural patterns related to different emo-
tions are consistent and stable across individuals and could be used
as effective indicators to reliably label and evaluate the true evoked
emotion. It explains why the VR induction paradigm is important in
finding biomarkers of specific emotional states, which could fundamen-
tally promote the computational models for affective computing. Our
study combines EEG and a naturalistic immersive VR experience and
paves the way to study human emotions in more realistic and natural-
istic settings. Along with our pioneering heading, we hope to create
publicly accessible databases of VR stimulus material in the future so
that we can make consistent comparisons across studies and start a new
direction with an active data collection mechanism using VR.

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on September 14,2024 at 12:00:40 UTC from IEEE Xplore.  Restrictions apply. 



3841LI ET AL.: NEurophysIoLogIcAL ANd subjEcTIvE ANALysIs of vr EmoTIoN INducTIoN pArAdIgm

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of
China (No.61872020, 62172437, U20A20195, 62102208, 62002010),
Beijing Natural Science Foundation under Grant (4214066), Beijing
Advanced Innovation Center for Biomedical Engineering under Grant
ZF138G1714, National Science Foundation of USA under Grants
IIS-1715985 and IIS-1812606, and Global Visiting Fellowship of
Bournemouth University.

This work was supported by the Research Program Funds of the
Collaborative Innovation Center of Assessment toward Basic Edu-
cation Quality at Beijing Normal University: 2021-01-131-BZK01
supported by the Fundamental Research Funds for the Central Univer-
sities:310422116.

REFERENCES

[1] J. R. Fontaine, K. R. Scherer, and C. Soriano, Components of emotional
meaning: A sourcebook. Oxford University Press, 2013.

[2] G. Mohammadi and P. Vuilleumier, “A multi-componential approach to
emotion recognition and the effect of personality,” IEEE Transactions on
Affective Computing, vol. PP, no. 99, pp. 1–1, 2020.

[3] A. Moors, P. C. Ellsworth, K. R. Scherer, and N. H. Frijda, “Appraisal
theories of emotion: State of the art and future development,” Emotion
Review, vol. 5, no. 2, pp. 119–124, 2013.

[4] K. R. Scherer, A. Schorr, and T. Johnstone, Appraisal processes in emotion:
Theory, methods, research. Oxford University Press, 2001.

[5] N. H. Frijda, The laws of emotion. Psychology Press, 2017.
[6] S. Katsigiannis and N. Ramzan, “Dreamer: A database for emotion recog-

nition through eeg and ecg signals from wireless low-cost off-the-shelf
devices,” IEEE journal of biomedical and health informatics, vol. 22,
no. 1, pp. 98–107, 2017.

[7] S. M. Hofmann, F. Klotzsche, A. Mariola, V. V. Nikulin, A. Villringer, and
M. Gaebler, “Decoding subjective emotional arousal during a naturalistic
vr experience from eeg using lstms,” in IEEE International Conference on
Artificial Intelligence and Virtual Reality (AIVR), 2018, pp. 128–131.

[8] R. Somarathna, T. Bednarz, and G. Mohammadi, “Virtual reality for
emotion elicitation–a review,” arXiv preprint arXiv:2111.04461, 2021.

[9] E. Bastug, M. Bennis, M. Médard, and M. Debbah, “Toward intercon-
nected virtual reality: Opportunities, challenges, and enablers,” IEEE
Communications Magazine, vol. 55, no. 6, pp. 110–117, 2017.

[10] F. Pallavicini, A. Pepe, and M. E. Minissi, “Gaming in virtual reality: What
changes in terms of usability, emotional response and sense of presence
compared to non-immersive video games?” Simulation & Gaming, vol. 50,
no. 2, pp. 136–159, 2019.

[11] A. Kim, M. Chang, Y. Choi, S. Jeon, and K. Lee, “The effect of immersion
on emotional responses to film viewing in a virtual environment,” in IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), 2018, pp.
601–602.

[12] M. Moghimi, R. Stone, and P. Rotshtein, “Affective recognition in dynamic
and interactive virtual environments,” IEEE Transactions on Affective
Computing, vol. 11, no. 1, pp. 45–62, 2017.

[13] S. M. Alarcao and M. J. Fonseca, “Emotions recognition using eeg signals:
A survey,” IEEE Transactions on Affective Computing, vol. 10, no. 3, pp.
374–393, 2017.

[14] W. L. Zheng and B. L. Lu, “Investigating critical frequency bands and
channels for eeg-based emotion recognition with deep neural networks,”
IEEE Transactions on Autonomous Mental Development, vol. 7, no. 3, pp.
162–175, 2015.

[15] Y. J. Liu, M. Yu, G. Zhao, J. Song, Y. Ge, and Y. Shi, “Real-time movie-
induced discrete emotion recognition from eeg signals,” IEEE Transactions
on Affective Computing, vol. 9, no. 4, pp. 550–562, 2017.

[16] Y. Zhang, G. Zhao, Y. Shu, Y. Ge, and X. Sun, “Cped: A chinese positive
emotion database for emotion elicitation and analysis,” IEEE Transactions
on Affective Computing, vol. PP, no. 99, pp. 1–1, 2021.

[17] M. M. Bradley and P. J. Lang, “Affective norms for english text (anet):
Affective ratings of text and instruction manual,” Techical Report. D-1,
University of Florida, Gainesville, FL, 2007.

[18] P. J. Lang, M. M. Bradley, B. N. Cuthbert et al., “International affective
picture system (iaps): Technical manual and affective ratings,” NIMH
Center for the Study of Emotion and Attention, vol. 1, no. 39-58, p. 3,
1997.

[19] S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, “Deap: A database for emotion analysis;

using physiological signals,” IEEE transactions on affective computing,
vol. 3, no. 1, pp. 18–31, 2011.

[20] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal
database for affect recognition and implicit tagging,” IEEE transactions
on affective computing, vol. 3, no. 1, pp. 42–55, 2011.

[21] J. A. M. Correa, M. K. Abadi, N. Sebe, and I. Patras, “Amigos: A dataset
for affect, personality and mood research on individuals and groups,” IEEE
Transactions on Affective Computing, vol. 12, no. 2, pp. 479–493, 2018.

[22] R. Subramanian, J. Wache, M. K. Abadi, R. L. Vieriu, S. Winkler, and
N. Sebe, “Ascertain: Emotion and personality recognition using commer-
cial sensors,” IEEE Transactions on Affective Computing, vol. 9, no. 2, pp.
147–160, 2016.

[23] G. Rizzolatti and L. Craighero, “The mirror-neuron system,” Annu. Rev.
Neurosci., vol. 27, pp. 169–192, 2004.
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