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Fig. 1: The research framework: emotion induction materials on the left, the AX-CPT cognitive task in the middle, and the analysis and
processing of multimodal physiological data on the right

Abstract—Cognitive control is often perplexing to elucidate and can be easily influenced by emotions. Understanding the individual
cognitive control level is crucial for enhancing VR interaction and designing adaptive and self-correcting VR/AR applications. Emotions
can reallocate processing resources and influence cognitive control performance. However, current research has primarily emphasized
the impact of emotional valence on cognitive control tasks, neglecting emotional arousal. In this study, we comprehensively investigate
the influence of emotions on cognitive control based on the arousal-valence model. A total of 26 participants are recruited, inducing
emotions through VR videos with high ecological validity and then performing related cognitive control tasks. Leveraging physiological
data including EEG, HRV, and EDA, we employ classification techniques such as SVM, KNN, and deep learning to categorize
cognitive control levels. The experiment results demonstrate that high-arousal emotions significantly enhance users’ cognitive control
abilities. Utilizing complementary information among multi-modal physiological signal features, we achieve an accuracy of 84.52% in
distinguishing between high and low cognitive control. Additionally, time-frequency analysis results confirm the existence of neural
patterns related to cognitive control, contributing to a better understanding of the neural mechanisms underlying cognitive control in VR.
Our research indicates that physiological signals measured from both the central and autonomic nervous systems can be employed for
cognitive control classification, paving the way for novel approaches to improve VR/AR interactions.

Index Terms—Cognitive control, emotion, physiological signal, deep learning

1 INTRODUCTION

Virtual Reality (VR) is increasingly being incorporated into cogni-
tive studies due to its immersive and interactive capabilities, which
enhance information retrieval and cognitive abilities within virtual envi-
ronments [1]. During various VR tasks and challenges, users typically
rely on input devices such as controllers or gloves to select objectives,
plan actions and continually make decisions. The successful execution
of these tasks and decision-making processes requires users to possess
strong cognitive control abilities. Cognitive control, also known as
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executive function, comprises a set of psychological processes that
involve goal selection, regulation of thoughts and actions to achieve
these goals, and sustained attention. It reflects our ability to regulate
and pursue goal-oriented behavior. Accounting for users’ cognitive
abilities and limited cognitive resources, some VR-based applications
dynamically adjust VR environments, games, or tasks based on users’
psychological/physiological states and cognitive performance. This
personalized approach enhances suitability for users, thereby increasing
the immersion and engagement of the VR experience [2].

During the interactive process, the performance of the cognitive
control task is influenced not only by the external environment but
also by an individual’s subjective feelings, particularly emotional states
closely tied to cognition. Previous research has shown that emotional
interference can greatly disrupt goal-directed behavior, leading to the
reallocation of processing resources and affecting the performance of
cognitive control tasks [3, 4]. Additionally, some studies suggest that
cognitive control could be influenced by heightened arousal levels and
that this impact varies among individuals [5]. As depicted in Fig.2, the
effect of emotional arousal levels on individual performance generally
follows Hebb’s U-shaped curve model. In this model, excessively high
or low levels of emotional arousal tend to hinder task performance,
while a moderate level of emotional arousal stimulates users to perform
optimally. In terms of emotional valence, positive emotions generally
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Fig. 2: Schematic illustration of the association between emotion arousal
levels and cognitive performance.

enhance user performance, while negative emotions tend to hinder
it [6]. However, there are also studies with contrasting conclusions.
Mayer et al. argue that individuals have limited working memory
capacity, and cognitive load restricts the acquisition and integration
of information [7]. Both positive and negative emotions can increase
cognitive load and decrease cognitive control levels. Consequently,
there is no unified and comprehensive conclusion regarding the effects
of arousal/valence emotions on cognitive control.

Hence, understanding the effects of emotions on cognitive control
and the underlying physiological mechanisms is crucial. This under-
standing can help induce specific emotional states in users to enhance
cognitive control levels and identify biological markers of cognitive
control. In particular, VR has been demonstrated to be an ecologically
valid paradigm for studying emotions [8]. Furthermore, due to its abil-
ity to induce high-arousal emotions, VR holds a unique advantage in
investigating the impact of emotions on cognitive control [9]. How-
ever, most current research has primarily focused on examining the
impact of emotional valence on cognitive control. As demonstrated
in Pekrun’s cognitive/motivational model of emotion effects [10] and
Linnenbrink-Garcia’s research on affect and engagement [11], it is not
sufficient to solely distinguish between positive and negative emotional
states. It is vital to consider the underlying level of activation or arousal.
Therefore, building on Russell’s arousal-valence model of emotion,
we have embarked on a comprehensive exploration of the relationship
between different types of emotions and cognitive control [12].

Based on our literature review, we formulate the following hypothe-
ses: The high emotional arousal induced by VR videos significantly
enhances user performance. Excessively high or low emotional arousal
diminishes task performance. To verify these hypotheses, we have
designed a VR-based emotion induction experiment using 8 VR videos
as stimuli for emotion induction [13]. Subsequently, we conducted
corresponding cognitive control tasks known as the AX-Continuous
Performance Test (AX-CPT) to systematically investigate how emo-
tions affect cognitive control. Additionally, we collected both subjective
and objective data from participants to evaluate their cognitive control
level. Subjective data included cognitive task performance (test accu-
racy and reaction time), reflecting an individual’s cognitive control level.
For objective data, considering the implicit nature of cognitive control,
changes are difficult to observe through explicit expressions and be-
haviors. However, different cognitive control levels trigger a series of
neurophysiological reactions in the human body, often accompanied by
changes in the Central Nervous System (CNS) and Autonomic Nervous
System (ANS) activity [14–17]. Electroencephalography (EEG) sig-
nals, Heart Rate Variability (HRV), and Electrodermal Activity (EDA)
are effective markers of these two systems’ responses, respectively [18].
Thus, we collected three types of physiological signals: EEG, HRV,
and EDA. By continuously monitoring users’ cognitive control levels
using multimodal physiological data, we aim to identify objective and

quantifiable biomarkers. The contributions of this study are as follows:
• We explore the relationship between emotions and cognitive con-

trol in VR, utilizing the valence-arousal emotion model. Our
research indicates that heightened emotional arousal can indeed
enhance cognitive control levels. These findings hold signifi-
cant implications for improving user experiences and capabilities
within VR environments, providing invaluable insights for the
advancement of human-computer interaction.

• Compared to single-modality, our deep learning networks that
utilize multimodal physiological signals show a substantial perfor-
mance enhancement, attaining an accuracy of 84.52% in recog-
nizing cognitive control levels. Additionally, information drawn
from different modalities effectively complements each other.

• We identify stable neural patterns associated with cognitive con-
trol. Results from time-frequency analysis uncover higher cogni-
tive control levels are associated with a decrease in α oscillatory
energy and an increase in β oscillatory energy. This fundamen-
tal evidence aids our comprehension of the neural mechanisms
involved in cognitive control and provides valuable guidance for
designing adaptive VR/AR systems.

The remainder of the paper is structured as follows: Section 2 re-
views the relevant background literature on the relationship between
emotions and cognition in VR. Section 3 provides a detailed description
of our experiment, including the design of cognitive control tasks and a
comprehensive overview of the experimental process. In Section 4, we
present and discuss the results of our study. In Section 5, we introduce a
classification method based on multimodal physiological data. Section
6 is dedicated to the discussion, and Section 7 provides a summary of
this paper.

2 RELATED WORKS

We first discuss the recent research on cognitive control in VR. Next,
we delve into the influence of emotions on cognitive control and the
underlying motivation for this study. Lastly, we provide an overview of
the physiological patterns associated with cognitive control.

2.1 Cognitive Control in VR
Cognitive control refers to a set of higher-order cognitive processes
and abilities enabling goal-directed and adaptable behavior in various
situations. On the other hand, VR provides ecologically valid scenarios
where users can exercise these cognitive behaviors and abilities. Unlike
traditional laboratory environments, VR presents unique opportunities
for experiential active learning. It allows precise control over stimulus
levels and task difficulty and possesses the capability of objectively
measuring users’ cognitive control levels. As such, VR has proven to
be not just a suitable, but an exceptional tool for both assessing and
enhancing users’ cognitive control skills.

M. Clements et al. conducted an insightful study on motion tracking
in a VR environment to assess the effects on, and reasons for, im-
provements in participants’ motor skills. Participants were engaged
in simulated marksmanship training using a firearm game controller
while receiving immediate feedback and scores. The results revealed
significant enhancements in shot accuracy, precision, and reaction times
during the cognitive training process, suggesting a notable improve-
ment in users’ cognitive control levels [19]. In another study, Jacoby
et al. compared the effectiveness of a Virtual Reality Mall (VMall)
with traditional Occupational Therapy (OT) in improving executive
functions in patients with Traumatic Brain Injury (TBI). The study
demonstrated that most participants exhibited an improvement in their
cognitive control levels after treatment. Specifically, performance on
executive function tests in the VR environment was superior, suggesting
that VR can lead to better improvements in complex daily activities
compared to traditional OT methods [20]. Cao et al. explored the
impact of Cinematic Virtual Reality (CVR) on users’ cognitive activ-
ities. They investigated whether the sense of immersion provided by
VR could enhance the cognitive integration of information in CVR.
This was done by comparing cognitive activities when watching 3D
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computer-generated animations in both non-CVR and CVR environ-
ments. The research showed that participants exhibited higher early
visual attention in the CVR environment [21].

Furthermore, Luong et al. investigated the possible additional im-
pact of wearing a Head-Mounted Display (HMD) on users’ cognitive
control compared to real-world environments. Participants took part
in standardized cognitive control tasks (N-back tasks) with varying
difficulty levels, both in virtual and real environments. Data was col-
lected through self-report questionnaires, task performance measures,
and behavioral and physiological indicators to evaluate cognitive states.
Interestingly, no significant difference was found in task performance
between the virtual and real environments [22]. This study highlights
that the use of a VR HMD does not inherently impact users’ cogni-
tive control levels. However, the underlying reasons for the observed
improvements in cognitive control levels within VR, and the neural
mechanisms involved, remain less understood. It’s important to note
that cognitive control abilities are influenced not only by external fac-
tors such as the environment and devices but are primarily affected by
subjective states, including individual emotions and personal experi-
ences.

2.2 Relationship Between Cognitive Control and Emotion

Cognitive control represents our ability to guide and maintain goal-
oriented behavior. Individual emotions can significantly influence
various aspects of cognitive control, including attention, memory, and
decision-making [23, 24]. It’s tempting to view emotions as the adver-
sary of cognitive control. Indeed, in moments of emotional intensity,
our capacity to consciously direct our thoughts and actions may dimin-
ish. However, emotions can also play a beneficial role. For instance,
experiencing anger can serve as a powerful motivator. Some theories
propose that emotions and cognitive control are not opposing forces
but rather integrated and harmonious components. Emotions can aid
in resolving control dilemmas, fostering a shift in the entire system
towards a more unified and situationally appropriate control state [25].

D. Parsons et al. conducted a study investigating the impact of
different emotional stimuli on executive functions. They devised two
conditions: one where participants completed emotional tasks in isola-
tion, and a second where cognitive control and emotional tasks were
performed concurrently. To realize this, they developed a virtual reality
Stroop task (VRST), where Stroop stimuli were presented within a
virtual environment. The experiment sought to assess neurocognitive
and psychophysiological responses when executing these tasks in both
low-fear (safe) and high-fear (ambush desert) environments. The find-
ings suggested that an increase in cognitive workload was correlated
with the more cognitively demanding Stroop condition. Further, it
was implied that shifting attention from the environment to the Stroop
stimuli may necessitate enhanced inhibitory control [26]. In a separate
study, Storbeck et al. explored the influence of emotions on cognitive
control levels, specifically spatial working memory capacity. They
induced positive, negative, and neutral emotions in participants and
subsequently had them engage in a spatial working memory span task
to measure their working memory capacity. The study revealed that
positive emotions improved working memory capacity, while negative
emotions had no impact on performance. Interestingly, when compared
to a neutral emotional state, negative emotions did not reduce working
memory capacity, suggesting that they do not adversely affect executive
control [27].

While these studies provide valuable insights into the impact of
emotions on cognitive tasks, there remains considerable debate and
controversy over their conclusions: Do all types of emotions either
enhance or diminish cognitive control levels? Are the effects fleeting or
more persistent? It’s noteworthy that these studies predominantly focus
on the valence (i.e., positivity or negativity) or arousal (excitement or
calmness) of emotions, often overlooking the integration of the two-
dimensional emotion model (Russell’s Arousal-Valence model) with
cognitive control. Consequently, interpreting these findings to elucidate
the relationship between emotions and cognitive control can be both
challenging and potentially misleading. Therefore, we propose an
approach that leverages the Russell arousal-valence model of emotions

and exploits the unique advantages of VR in inducing emotions. This
would allow for a systematic and comprehensive analysis of the intricate
relationship between emotions and cognitive control. To the best of
my knowledge, there exists a paucity of research exploring this critical
issue within VR environments.

2.3 Physiological Pattern of Cognitive Control
Cognitive control is a multifaceted construct that encompasses var-
ious higher-order brain functions, regulated by the central nervous
system (CNS). Additionally, the autonomic nervous system (ANS),
which governs internal bodily functions such as heart rate (HR), respi-
ration (RESP), blood pressure, and digestion, plays a crucial role. The
ANS is divided into the sympathetic nervous system, whose activation
may lead to emotional excitement, and the parasympathetic nervous
system, which when activated can induce relaxation and relieve anxi-
ety [28]. These activities can directly influence cognitive control levels.
Consequently, it’s possible to objectively assess cognitive control func-
tions by monitoring the psychophysiological changes in the CNS and
ANS [29, 30].

EEG primarily originates from the electrical activity of the cerebral
cortex, directly measuring the activity induced by the functioning of the
CNS [31]. EEG signals are categorized into different brain regions and
five frequency bands: δ (1-4Hz), θ (4-7Hz), α (8-12Hz), β (13-28Hz),
and γ (29-50Hz). Notably, α activity is regarded as an effective and reli-
able indicator for cognitive functions. It mirrors the brain’s resting state
and is associated with processes such as attentional regulation, mental
relaxation, and the inhibition of irrelevant sensory input. In a study
by Mahjoory et al., EEG activity during resting state and cognitive
control tasks were compared. They found that better performance was
linked with increased α oscillations in the right hemisphere’s frontal,
temporal, and occipital regions [32]. Similarly, θ and β waves have
also been found to correspond with cognitive control or executive func-
tions [33–35]. Furthermore, Hinault et al. utilized EEG to investigate
the spatiotemporal neural correlates of cognitive control. Participants
performed a numerical Stroop task under two conditions: congruent
stimuli (larger numbers displayed in larger fonts) and incongruent stim-
uli (larger numbers displayed in smaller fonts). Their results indicated
that when processing incongruent stimuli, participants exhibited higher
levels of cognitive control, with activation observed in the frontal and
parietal regions of the brain [36].

The most commonly employed measurements for evaluating the
activity of the ANS include ECG, Photoplethysmogram (PPG), , and
Respiratory Rate. Both ECG and PPG signals can be used to determine
heart rate (HR) and accurately mirror changes in inter-beat intervals
(IBI) corresponding to heartbeats. This allows for the calculation
of trends in HRV indices [37]. For instance, a study by Lee et al.
assessed HRV data in individuals with Internet Gaming Disorder (IGD)
and healthy controls during gameplay. Their findings indicated that
individuals with IGD exhibited reduced high-frequency HRV during
real-time gaming sessions, a phenomenon related to diminished goal-
oriented cognitive control over the game.

In the realm of VR-based cognitive research, most studies have pri-
marily focused on exploring specific patterns of physiological signals
under varying cognitive states or cognitive loads [38]. However, it’s
important to note that cognitive control is not synonymous with cog-
nitive load or cognitive states. In situations where cognitive load is
high, attention may become dispersed, leading to suboptimal cognitive
control performance. Moreover, there is a notable scarcity of research
investigating the neurophysiological mechanisms underlying cognitive
control or executive function performance during VR experiences. To
date, no effective biomarkers have been identified. As a response to this
gap in the research, we collected multimodal physiological data and
cognitive control task performance metrics. These data are crucial for a
more comprehensive understanding of cognitive control and emotions.

3 METHODS

We have designed a VR emotion induction and cognitive control task
to investigate the impact of emotions on cognitive control, specifically
focusing on task accuracy and reaction time. Following this, we explore
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the psychophysiological mechanisms underlying this influence through
the analysis of multimodal physiological data. In the following section,
we offer a detailed description of the experiment.
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Fig. 3: The EEG cap layout comprises 34 electrodes grouped into 10
regions based on prior knowledge.

3.1 Experiment Apparatus
In this study, we used 1) An HTC Vive Pro HMD for displaying VR
videos and AX-CPT tasks, with a resolution of 1200×1080 pixels per
eye and a screen refresh rate of 90 Hz. We measured and adjusted
the inter-pupillary distance for each participant before using VR. 2)
An HP laptop computer with an Intel Core i9 processor, GTX 3080T
graphics card, and 32 GB of RAM. 3) An ANT Neuro EEG signal
acquisition system1, capable of capturing signals from 128 electrodes
on the scalp. The electrode placement follows the 10-20 international
system. We only used 34 electrodes in this study. As depicted in Fig. 3,
based on prior knowledge of neuroscience, we divided the 34 electrodes
into 4 functional areas: the frontal lobe, parietal lobe, temporal lobe,
and occipital lobe area. All electrodes were referenced to CPz and
grounded to the forehead. Prior to the experiment, the non-abrasive
gel was applied to the electrode cap, and electrode impedance should
be kept below 5kΩ before and during the experiment. The sampling
rate was set to 1000 Hz. 4) A Shimmer3 GSR+ system2 was used to
capture PPG and EDA signals. Similar to ECG, we can also calculate
HR and HRV based on PPG. The sensors were placed on the non-
dominant wrist of the participant. EDA sensors were placed on the
middle phalanges of the index and middle fingers. PPG sensors were
placed on the tip of the thumb. All data were recorded at a sampling
rate of 200 Hz. The hardware and sensor configurations are shown in
Fig. 4.

Fig. 4: Hardware and the sensor setup. The HMD is affixed using lateral
straps, ensuring that the upper strap is kept loose to avoid pressure on
the central forehead electrode and minimize artifacts.

1https://www.ant-neuro.com/
2https://shimmersensing.com/

3.2 Participants and Ethics
The experiment was conducted in an indoor environment maintained
at a temperature of 26 degrees Celsius. We recruited a total of 26
participants, aged between 21 and 45 (M=31.2, SD=3.16), including
12 females and 14 males. All participants are right-handed and have
normal vision. None of the participants has a history of heart disease,
neurological disorders, or other cognitive-related illnesses. The study
received approval from the local ethics committee.

3.3 Emotion Induction Material and Evaluation
Currently, there is a dearth of VR-based emotion induction materials.
Following the criteria used in previous studies, we selected 8 VR videos
from Stanford’s Immersive VR video datasets, YouTube3,4, and Steam
to induce 4 emotional states of Russell’s arousal-valence model: Low
Arousal/Low Valence (LALV), Low Arousal/High Valence (LAHV),
High Arousal/Low Valence (HALV), and High Arousal/High Valence
(HAHV) [39]. The specific video titles, descriptions, sources, and
lengths are presented in Tab.1.

To evaluate emotions, we utilized the well-established 9-point Self-
Assessment Manikin (SAM) scale prevalent in the field of affective
computing. This scale gauges subjects’ arousal, valence, and domi-
nance [40]. Valence ranges from negative to positive, arousal varies
from calm to excitement, and dominance spans from low control to
high control.

3.4 Cognitive Task
In our experiment, we utilized the classic psychology paradigm: AX-
CPT. This paradigm is a widely used cognitive control task to examine
context processing and goal maintenance. It measures participants’
executive control ability without losing attention [41], by asking partic-
ipants to quickly and accurately identify specific letter combinations
within a series of letter stimuli. We developed a VR version of the
AX-CPT task in accordance with specific design and development
guidelines for cognitive assessment in immersive VR [42]. Specifi-
cally, we used the Unity3D game engine for development and designed
the interaction between the participants and the virtual scene using the
SteamVR SDK. We employed controllers to ensure easy and ergonomic
interaction, with the trigger on the Vive controller being used to drive
the task.

The task commenced with the appearance of a cross-fixation point
at the screen’s center, which lasted for 400 ms. Following the disap-
pearance of the fixation point, a cue stimulus (either the uppercase
letter A or B) was displayed for 300 ms before disappearing. This was
succeeded by a blank delay period of 3,000 ms, after which a probe
stimulus (either the uppercase letter X or Y) was presented for 300 ms.
Here, "B" represents any letter other than "A", and "Y" represents any
letter other than "X"’ Participants were required to make a judgment
within 1800 ms. If an X followed the letter A, participants were in-
structed to pull the left trigger (i.e., AX). If a Y appeared immediately
after the letter A or if an X or Y followed the letter B (i.e., AY, BX, or
BY), they were instructed to press the right trigger. Participants were
required to press the trigger quickly and accurately without aiming
with the controller. After the trigger response, a blank jitter screen was
presented for a random duration of 1,500 ms, 2,500 ms, or 3,500 ms,
averaging to 2500 ms. The participants’ reaction times were calculated
within the period of the blank jitter screen presentation. Thus, the
average duration for each trial was approximately 6,500 ms.

In the task, cues A and probe stimuli X were presented with high
frequencies. The experiment comprised a total of 100 trials. Specifi-
cally, in line with the classic AX-CPT paradigm, it included 70% AX
sequences, with AY, BX, and BY sequences each making up 10%.
Participants developed a response bias towards A and X. Therefore, in
AY, BX, and BY trials, participants needed to overcome the conflict be-
tween the response bias (dominant response) and the correct judgment
(target). Thus, they might miss the target stimulus or make incorrect
responses. Lastly, we recorded the task accuracy of all trials and the

3https://www.youtube.com/watch?v=ViLReDIvk_A
4https://www.youtube.com/watch?v=C0Rl4m38gOU
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Table 1: Comprehensive list of 8 immersive VR clips in the experiment.

ID Title Descriptions Sources Lengths(s)

1 The Nepal Earthquake Aftermath Short film on the effects of an earthquake in Nepal Short Stanford Immersive VR Videos 240
2 War Zone Journalistic clip of a war-torn city Stanford Immersive VR Videos 183
3 The Real Run Will you be able to resist the ruthless nun who haunts the place? Youtube 174
4 The Conjuring 2 Un Film de James Wan avec Vera Farmiga et Patrick Wilson Youtube 188
5 The Malaekahana Sunrise Viewer sees the sun rising over the horizon at a beach Stanford Immersive VR Videos 120
6 The Mountain Stillness Atmospheric shots of Canadian snowy mountains Stanford Immersive VR Videos 128
7 TheBlu: Whale Encounter View underwater sea life and encounter a whale Steam 100
8 TheBlu: Reef Migration View Reef Migration on the ocean floor Steam 350

Table 2: Extracted Features for Each Modality (Feature Dimension).

Modality Extracted features

EEG (204) Power Spectrum of θ , α , β and γ bands for
34 electrodes.The Hemispherical Asymmetry
between 17 pairs of symmetrical electrodes
in the 4 bands.

HRV (60) HR, Standard deviation of IBIs, Root mean
square of successive RR interval differences,
Percentage of differences among adjacent
IBIs more than 50ms, Mean of IBIs, 50 spec-
tral power in the bands from [0-5] Hz compo-
nent of the ECG signal, low frequency [0.01,
0.08] Hz, medium frequency [0.08,0.15] and
high frequency [0.15, 0.5] Hz components of
HRV spectral power, Poincaré analysis fea-
tures (2 features). [43].

EDA (31) Mean skin resistance and mean of deriva-
tive, mean differential for negative values
only (mean decrease rate during decay time),
the proportion of negative derivative samples,
number of local minima in EDA signal, aver-
age rising time of EDA signal, spectral power
in the [0-2.4] Hz band, zero crossing rate
of skin conductance slow response (SCSR)
[0-0.2] Hz, zero crossing rate of skin conduc-
tance very slow response (SCVSR) [0-0.08]
Hz, mean SCSR, SCVSR peak magnitude.

average reaction time for each trial. The reaction time refers to the time
frame from when participants see the probe stimulus (X or Y) in each
trial to when they press the trigger button.

3.5 Experimental Procedures

All participants volunteered to participate in the study. Before the ex-
periment, the experimenter briefed the participants about the purpose,
procedures, potential risks of the study, and the significance of the
subjective questionnaires. Subsequently, the participants practiced our
AX-CPT task to ensure their understanding of the task requirements.
Thereafter, the participants signed a written informed consent form,
and they were informed that they could discontinue the experiment at
any time if they encountered issues during the experiment. Finally, the
experimenter fitted the participants with the EEG cap and the Shim-
mer3 GSR+ device, checked the signal quality, and then initiated the
experiment.

The experiment consists of a total of 1 baseline stage and 8 sessions.
It began with participants quietly seated in a chair for a 5-minute base-
line period. Subsequently, the 8 VR videos were played in random
order across 8 sessions, and 2 VR videos that targeted the same emotion
were not shown consecutively. Each session consisted of 4 parts. First,
they randomly viewed one of 8 VR videos, each with a duration of
approximately 3 minutes and 30 seconds. After watching each video,
participants completed the SAM questionnaire to assess emotional re-
sponses. The questionnaire was displayed on the VR screen to avoid
the need for repeated HMD removals during the experiment. Subse-
quently, the AX-CPT task commenced, consisting of 100 trials and

lasting a total of 650 seconds. At last, participants rested for 5 minutes
to prevent mental fatigue. They then continued with this cycle 7 more
times, completing a total of 8 video viewing and cognitive control tasks.
The entire experiment took approximately 2.6 hours to complete.

3.6 Physiological Feature Extraction
We provide a detailed description of the methods used for extracting
features from each of the bio-sensing modalities. All extracted features
are listed in Tab.2.

3.6.1 EEG Preprocessing and Feature Extraction
Raw EEG data often contain noise such as body movements, VR
displays, electrooculography (EOG), ECG, and electromyography
(EMG) [44]. We utilized EEGLAB, an open-source toolbox in MAT-
LAB that provides powerful algorithms for EEG preprocessing [45].
Initially, we downsampled the raw signals from 1000 Hz to 256 Hz
using the "pop_resample.m" function in EEGLAB and re-referenced to
the mastoid electrodes M1 and M2. Subsequently, we applied a band-
pass filter ranging from 2 to 47 Hz to the signals using the FIR filter
in EEGLAB. The EEG signals were then visually inspected, and seg-
ments with amplitudes exceeding ±100 (µν) were manually removed.
Finally, we employed Independent Component Analysis (ICA), a blind
source separation (BSS) method, to remove eye-blink artifacts and
non-cognitive-related artifacts from the signals. The EEG signals were
decomposed into 34 independent components (ICs). Following a visual
inspection by experts and using the SASICA plugin in EEGLAB, an
average of 5.46±0.84 components were removed per participant [46].
The preprocessed EEG data was then transformed into the frequency
domain for feature extraction. For each EEG channel, we used the Fast
Fourier Transform (FFT) on the time series for each trial to extract the
power spectrum of the signal. We then calculated the sum of squared
absolute values within the θ , α , β , and γ bands. Additionally, we com-
puted hemispheric asymmetry features between 17 pairs of symmetrical
electrodes in the 4 frequency bands. In the end, for each sample, we
obtained 204 power spectrum features (34 channels × 4 bands and 17
symmetrical channels × 4 bands), as shown in Tab.2.

3.6.2 HRV Feature Extraction
For each session, we first applied a moving average filter with a window
length of 0.25 seconds to filter the noise of the PPG signal. Then, we
used a peak detection algorithm to identify the R-peaks [47]. The
number of peaks per minute represents the Heart Rate (HR). The Inter-
beat Intervals (IBI) were obtained by calculating the time differences
between consecutive peaks. Finally, we computed the time-domain and
frequency-domain features of the IBI. The names and descriptions of
the HRV features are shown in Tab.2.

3.6.3 EDA Feature Extraction
EDA signals typically comprise a tonic component (Skin Conductance
Level, SCL) and a phasic component (Skin Conductance Response,
SCR). Following the method in [48], we utilized nonnegative decon-
volution to break down EDA data. Initially, we estimated tonic SC
activity by analyzing inter-impulse data through standard deconvolu-
tion of the raw EDA signals. Subsequently, the phasic SC data was
derived by subtracting the tonic SC activity from the original SC data,
and nonnegative deconvolution was applied to it. We then identified
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8 VR videos in the valence-arousal model along with their corresponding scores. The middle and right diagrams represent the distribution of average
Valence and Arousal ratings for the 4 emotion induction conditions (LALV, LAHV, HALV, HAHV).

single impulses and corresponding pore opening components through
segmentation of the driver and remainder signals. The original SC data
was subsequently reconstructed using the tonic and phasic components.
Finally, we extracted 31 EDA features, as presented in Tab.2.

3.7 Statistical Analysis
To assess the normality of the data, we employed the Shapiro-Wilk test.
Subsequently, if the data exhibited a normal distribution, we proceeded
to conduct One-way Repeated Measures ANOVA to investigate any
discrepancies in the average reaction time and accuracy of task com-
pletion across the 4 emotional states. A significance level of 0.05 was
employed for all statistical analyses. Notably, all statistical analyses
were performed using SPSS 22.0.

4 DATA ANALYSIS

In this section, we have conducted analyses on the self-reported data
and cognitive control task scores collected during the experiment.

4.1 Analysis of Self-ratings
As indicated on the left panel of Fig. 5, the average ratings for va-
lence and arousal under the 4 emotional conditions are displayed. The
distribution of the 8 videos across the 4 quadrants can be observed,
illustrating a wide range of emotional responses. In the middle and right
panels, box plots further highlight the significant differences in valence
and arousal ratings across these emotional states. To be specific, under
LALV condition, the average valence rating is 3.33, paired with an
arousal rating of 4.33. Under LAHV, the valence rating increases to an
average of 7.36, while the arousal rating is slightly higher at 4.47. For
HALV, the valence rating drops to an average of 2.41, with a notably
higher arousal rating of 7.58. Finally, under HAHV, the valence rating
is relatively high at an average of 7.30, coupled with an arousal rating
of 6.54. Across all 4 conditions, the average valence rating stands at
5.09, while the average arousal rating is 5.73.
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Fig. 6: Average reaction time and accuracy in cognitive control tasks
under 4 emotional conditions.

4.2 Analysis of Cognitive Control Task Performance

In our AX-CPT experiment, we used a total of 70 AX stimuli, along
with 10 each of AY, BX, and BY stimuli. As outlined in Fig. 6, the
ANOVA results suggest that participants, under HAHV condition, ex-
hibit the shortest average reaction time per trial (M = 0.264s, SD =
0.04). This is followed by HALV condition (M = 0.275s, SD = 0.035).
Significant differences in average reaction times are noted between
these two conditions and LALV condition (M = 0.333s, SD = 0.081),
as well as LAHV condition (M = 0.303, SD = 0.0532). Specifically,
the differences are highly significant between HAHV and both LALV
and LAHV (p < 0.001), and also between HALV and both LALV and
LAHV (p < 0.01 and p < 0.05, respectively). Moreover, substantial dif-
ferences are identified between HA and LA emotions (p < 0.01), while
no significant differences are found between HV and LV conditions (p
= 0.067).

Furthermore, for task completion accuracy, no significant differences
are found among the 4 emotional states (M = 98.17, SD = 1.33 for
HALV; M = 97.67, SD = 1.63 for HAHV; M = 97.63, SD = 1.37 for
LALV; M = 96.67, SD = 0.98 for LAHV). Similarly, no significant
differences are found between HA and LA, as well as between HV and
LV emotions.

5 CLASSIFICATION OF MULTIMODAL PHYSIOLOGICAL DATA

In this section, we present the method and classification results based
on multimodal physiological signals (EEG, HRV, and EDA). The pri-
mary focus of our experiment is to categorize levels of cognitive control
into high and low and to identify biomarkers that can accurately reflect
these levels. To achieve this, we use the performance results from the
cognitive control tasks carried out under 4 different emotional condi-
tions as our ground truth. We regard the multimodal physiological data
gathered during tasks after high arousal stimulation as indicative of high
cognitive control levels. Conversely, data obtained under low arousal
stimulation represent low cognitive control levels. By adopting this
approach, we ensure a balanced data representation for both categories.

To demonstrate the feasibility of identifying levels of cognitive con-
trol during VR experiences, we systematically evaluate the classifica-
tion performance of three distinct classifiers: Support Vector Machine
(SVM), K-Nearest Neighbors (KNN), and deep learning-based classifi-
cation models. In the course of our experiment, we gather EEG, HRV,
and EDA data from a total of 26 participants. Each participant engages
in 8 experimental sessions, split evenly between high and low cognitive
control levels — 4 sessions for each. We execute subject-dependent
evaluations, wherein the training and testing data are sourced from dif-
ferent sessions of the same participant. The training dataset comprises
data from six sessions (three sessions each from high and low cognitive
control levels), while the testing data is derived from the remaining two
sessions of the same participant. In the end, we conducted a total of
26 experiments and computed the average classification accuracy to
measure the effectiveness of the classifiers.
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Fig. 7: Our deep learning model: (1)The multi-channel EEG data for each trial is split into 13 frames, each spanning 0.5 seconds; (2) For each
frame, calculate the power spectrum in θ , α , β , and γ bands within each channel to generate EEG topographical maps; (3) Merge the topographical
maps from different frequency bands and fed into a recurrent-convolutional network to extract features, then concatenate the extracted feature with
manually extracted HRV and EDA features.

5.1 Traditional Classifiers
For SVM and KNN, the two classifiers use the features of three modali-
ties of data summarized in Tab.2 as inputs. Before training, all features
are rescaled between -1 and 1. KNN is a supervised classification
algorithm that organizes feature space into either binary or multi-class
clusters. In our study, we set K=5 as the baseline for comparison with
other methods. The SVM projects input data into a higher-dimensional
feature space using a kernel function, making the data more easily sepa-
rable than in the original feature space. The SVM classifier is versatile,
supporting a range of kernel functions. In our case, we employ the
Radial Basis Function (RBF) kernel.

5.2 Baseline Models
We use EEGNet as the baseline and compare it with our DL method [49].
EEGNet is a compact convolutional neural network that utilizes depth-
wise and separable convolutions to learn interpretable features across
various BCI tasks. Moreover, we employ the same implementation
details as those mentioned in the original paper.

5.3 Deep-Learning Classifiers
For deep learning networks, we propose a unique method that trans-
forms EEG signals into images. This approach eliminates the need for
extensive training data, instead leveraging deep convolution models to
extract feature representations from sequences of images.

5.3.1 EEG-images-based Deep-Learning Classifiers
For EEG, in the cognitive control task, each session consists of 100
trials, with each trial lasting for 6.5 seconds. Each trial is divided
into 13 frames, each lasting 0.5 seconds, as depicted in Fig.7. For
every such window, we transform the EEG signals into a sequence of
topology-preserving multispectral images. These images are fed into
a recurrent convolutional network, enabling the extraction of robust
feature representations from the image sequence.

Specifically, given that EEG electrodes are distributed over the scalp
in a 3-dimensional space, we first project them onto a 2-D surface using
a topology-preserving Azimuthal Equidistant Projection (AEP), thus
preserving the spatial structure between electrodes. Following this, for
each frequency band, we apply the Clough-Tocher method to interpolate
the power spectrum values across the scalp and estimate values between
the electrodes on a 32×32 grid [50]. As a result, 4 topographical
activity maps corresponding to the θ , α , β , and γ bands are obtained.
These maps are subsequently merged to form a multispectral image.
Ultimately, for each 0.5s window, the EEG image size is 13× 32×
32×4, and the size of the entire EEG trial is 13×32×32×4.

Based on these EEG image sequences, otherwise referred to as EEG
movies, we employ a recurrent neural network to extract robust feature

representations. As depicted in Fig.7, a ConvNet is first utilized to
process the spatial and spectral variation in EEG. All ConvNets employ
a small 3×3 receptive field, a stride of 1 pixel, and the ReLU activation
function, with a padding of 1 pixel applied to preserve spatial resolution.
The initial number of kernels is 32, and for deeper stacks of layers,
the number of kernels within each convolutional layer is doubled. By
stacking multiple convolutional layers in this manner, we achieve more
effective receptive fields at higher dimensions while requiring fewer
parameters. The window size of max-pooling layers is set to 2× 2
with a stride of 2 pixels. Furthermore, for a trial comprising 13 frames,
ConvNet parameters are shared across different frames, effectively
reducing the number of parameters. Subsequently, the outputs from
all ConvNets are reshaped into a continuous sequence of frames, and
an LSTM is employed to extract temporal evolution features from the
ConvNet sequence. The number of memory cells in the LSTM layer is
set to 128. We then concatenate the extracted EEG features with the
hemispherical asymmetry features between 17 pairs of symmetrical
electrodes, HRV, and EDA features (as mentioned in Section 3.6).
Finally, the concatenated features are fed to a fully connected layer
and a softmax layer. Thus, we extract spatial, frequency, and temporal
features from EEG, deriving robust EEG feature representations.

5.3.2 Implementation Details
In this paper, we have implemented this network framework using
PyTorch. Owing to the weight sharing among different frames, which
amplifies gradient differences in various layers, we have employed the
Adam optimizer to minimize the cross-entropy loss function. We set
the learning rate at 0.001, while the coefficients β1 and β2, which are
used for computing the running averages of the gradient and squares
respectively, are set to 0.9 and 0.99. The batch size is configured at 32.
To mitigate overfitting, we have applied a dropout probability of 0.5 to
all fully connected layers.

5.4 Classification Performance
First, we carry out an independent evaluation of the classification per-
formance of traditional machine learning methods on single-modality
data. Then, we assess the results derived from fusing multi-modal
features and draw a comparison between the performance of recurrent
convolutional networks and traditional methods.

5.4.1 Classification Results of Different Bands
In our endeavor to identify the brain frequency band most strongly
associated with cognitive control, we perform a comparative analy-
sis of EEG power spectral features across various frequency bands.
As indicated in Tab.3, all bands are the confluence of classification
performance across all 4 frequency bands. SVM records an accuracy
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Table 3: The Average Accuracy and Standard Deviation of Classification
Results for Different Bands.

Classifier θ α β γ All Bands

SVM 57.86/9.73 69.23/8.72 67.66/11.37 60.94/10.93 73.68/7.70
KNN 56.39/9.89 69.70/7.98 65.41/12.37 60.30/10.44 72.28/8.34
DL 68.31/7.33 79.65/6.64 75.67/8.21 70.22/8.03 82.68/6.75

rate of 69.23%/8.72% in the α band, while KNN posts 69.70%/7.98%.
Yet, DL demonstrates the highest accuracy at 79.65%/7.64%, outclass-
ing KNN by a significant 9.95%, all the while maintaining a lower
standard deviation of 1.34%. Moreover, regardless of the frequency
band under examination, the DL method consistently delivers superior
accuracy and lower standard deviations. These accuracy levels stand
at 73.31%/7.33% for the θ band, 75.67%/8.21% for the β band, and
78.22%/8.03% for the γ band, outstripping SVM by substantial margins
of 15.45%, 8.01%, and 17.28%, respectively.
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Fig. 8: Box plot of the accuracies with different classifiers. The left figure
represents the classification accuracy using EEG data alone, while the
right figure represents the classification accuracy using multimodal data.

5.4.2 Classification Results of Different Modalities
The accuracy for each modality is encapsulated in Tab.4. From
our analysis, when using EEG, KNN achieves an accuracy rate of
72.28%±8.34% with F1-scores of 66.37%, while SVM notches an ac-
curacy rate of 73.68%±7.70% with F1-scores of 66.53%. EEGNet also
achieves an accuracy rate of 78.63%±7.59% with F1-scores of 73.66%.
Remarkably, when employing recurrent convolutional networks for
EEG classification, the accuracy peaks at 82.68%±6.75% with F1-
scores of 78.67%. Furthermore, for HRV, SVM outperforms KNN
by achieving a performance score of 71.24%±11.53% against KNN’s
69.73%±10.26%, with F1-scores of 70.22% and 60.29%, respectively.
Conversely, for EDA, KNN’s performance (71.03%±10.92%, F1-
scores of 64.88%) overshadows SVM’s (70.88%±11.34%, F1-scores
of 64.51%).

Additionally, we analyze the classification accuracy of multimodal
feature fusion. In this case, the fusion approach for SVM and KNN
involves the direct concatenation of three manually extracted modal
features into a larger composite feature vector for input. In contrast,
the DL method first employs a recurrent convolutional network to
extract spatial-temporal-frequency features from EEG data. This is
then concatenated with features derived from HRV and EDA, and the
combined feature set is fed into a fully connected layer. Our results
demonstrate that the classification accuracy using SVM and KNN
reaches 76.54%±7.68%, F1-scores of 71.32% and 74.02%±8.21%,
F1-scores of 68.40%, respectively, outperforming the results derived
from any single modality. For the baseline model, EEGNet achieves
80.95%/±8.14%, with F1-scores of 75.89%, which is also higher than
the single modality. Notably, the employment of recurrent convolu-
tional networks peaks the accuracy at 84.52%±6.42%, with the F1-
scores of 80.32%. To better illustrate the advantage of DL, the box plots
in Fig.8 display the accuracy of the three classifiers. We utilize a one-
way ANOVA to establish statistical significance. The results confirm
that the classification performance of multimodal fusion significantly
surpasses that of a single modality (p< 0.01).

(c)

(a)

(d)

(b)

Fig. 9: The confusion matrices for different classifiers using different
modalities. The numbers in the figure represent recognition accuracy. (a)
SVM(HRV). (b) KNN(EDA). (c) DL(EEG). (d)DL(EEG+HRV+EDA). The
content within parentheses indicates the modalities used.

Table 4: The Average Accuracy and F1-Scores of Classification Results
for Different Modalities.

Modality EEG HRV EDA EEG+HRV+EDA

SVM 73.68/66.53 71.24/70.22 70.88/64.51 76.54/71.32

KNN 72.28/66.37 69.73/60.29 71.03/64.88 74.02/68.40

EEGNet 78.63/73.66 —- —- 80.95/75.89

DL 82.68/78.67 —- —- 84.52/80.32

5.4.3 Confusion Matrices

Fig.9 presents the confusion matrices for various classifiers, utilizing
both single-modal and multi-modal fusion techniques. The matrices
provide detailed insights into the strengths and weaknesses of iden-
tifying cognitive control levels using different modalities. In each
matrix, every row signifies a target class, while every column signifies
the predicted class output by the classifier. The results indicate that
for the SVM classifier, the classification accuracy for recognizing low
cognitive control levels using HRV data is 74.63%, while for high
cognitive control levels, it stands at 67.85%. When using EDA data, the
classification accuracy for low cognitive control levels is 69.21%, and
for high cognitive control levels, it is 72.85%. Lastly, when we utilize
DL methods, the classification accuracy for identifying low cognitive
control levels using EEG data reaches 80.83%, and for high cognitive
control levels, it reaches a peak of 84.53%. Finally, when we apply DL
methods for multi-modal data classification, the classification accuracy
remains highest for low cognitive control levels at 83.08%, and for high
cognitive control levels, it peaks at 85.96%.

6 DISCUSSION

In this experiment, we have conducted a systematic analysis of the
impact of emotions on cognitive control within a VR environment,
using the valence-arousal emotion model as our primary framework.
Additionally, we have explored the underlying physiological mecha-
nisms influencing this relationship. We have employed multi-modal
physiological data to classify levels of cognitive control, identifying
the most relevant frequency bands linked to cognitive control. In this
section, we present a summary of our findings and juxtapose them with
insights gleaned from neuroscience research.
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6.1 Effect of Emotion on Cognitive Control
We elicit emotions in participants through VR videos and administer
classical psychological cognitive control tasks. As depicted in Fig. 5,
the distribution of the 8 videos and the outcomes illustrated in the box
plots confirm the successful induction of the desired emotional states.
This lays the foundation for exploring the influence of emotions on
cognitive control levels.

The findings depicted in Fig. 6 undeniably demonstrate that various
emotional states exert an influence on the performance of cognitive
control tasks. When compared to a low arousal emotional state, users
displayed significantly reduced reaction times during task execution
under high arousal emotional states. Moreover, there is no discernible
difference in the accuracy of participants’ performance in the cognitive
control task under both emotional conditions. This implies that partic-
ipants are capable of effectively carrying out the task without being
distracted and maintaining their focus irrespective of the condition.

6.2 The Complementary Characteristics Between Different
Modalities.

Tab.4 unequivocally illustrates that the DL method consistently outper-
forms traditional classifiers, regardless of whether it involves EEG alone
or the combined EEG+HRV+EDA. This highlights the effectiveness of
deep learning techniques in adeptly extracting robust temporal, spatial,
and frequency domain features from EEG data and discarding irrelevant
features, ultimately leading to improved classification outcomes. More-
over, when we combine data from all three modalities, both traditional
machine learning and DL methods surpass single-modality approaches.
The performance of SVM improved from its highest single-modality
accuracy of 73.68% to 76.54%, marking a gain of 2.86%. Similarly,
KNN shows an enhancement, rising from its highest single-modality ac-
curacy of 72.28% to 74.02%, representing an increase of 1.74%. On the
other hand, EEGNet achieves an enhancement from 78.63% to 80.95%,
with an increase of 2.32%. The DL method demonstrates a significant
boost, escalating from 82.68% to 84.52%, indicating an increase of
1.84%. The outstanding performance of the DL method indicates that
the model effectively learned the spatial-temporal-frequency features
of EEG signals.

We delve deeper into the reasons behind this performance improve-
ment and scrutinize the confusion matrices in Fig. 9 to reveal the
strengths and weaknesses of each modality. It can be observed that
high cognitive control levels are more readily identifiable, whereas low
cognitive control levels pose a bigger challenge. Specifically, EEG
and EDA possess advantages over HRV in classifying high cognitive
control levels. The KNN classifier achieves an accuracy of 72.85% in
recognizing high cognitive control levels, while EEG reaches 84.53%,
and the multimodal approach tops at 85.96%. These accuracies are
significantly higher (by 3.64%, 3.70%, and 2.88%, respectively) than
the accuracies for recognizing low cognitive control levels. In contrast,
HRV struggles with the identification of high cognitive control levels,
achieving an accuracy of only 67.85%, which is 6.78% lower than its
accuracy in recognizing low cognitive control levels. These findings
suggest that the three modalities exhibit differing discriminative ca-
pabilities in recognizing cognitive control. The fusion of multimodal
features amalgamates complementary information from each modality,
effectively enhancing the overall performance. This carries significant
implications for identifying individuals’ cognitive control levels using
objective physiological data in VR applications.

6.3 Neural Patterns of Cognitive Control
We further analyze stable neural patterns associated with cognitive
control and plot the power spectrum features in our experiment. As
shown in the red box section in Fig. 10, through time-frequency analy-
sis, we can discern that under high cognitive control conditions, there
is a reduction in oscillatory energy within the α band, while energy
within the β band increases. Conversely, in situations of low cognitive
control, the energy within the α band tends to increase. These find-
ings align with previous neuroscience research, which has confirmed
that an increase in α band oscillations is typically linked to states of
relaxed attention and tranquility (i.e., low cognitive control state) [51].

Low Cognitive Control High Cognitive Control

T
he

ta
A

lp
ha

B
et

a
G

am
m

a

1000 2000 3000 4000 5000

Fig. 10: The power spectrum map of one experiment, the horizontal axis
represents time, and the vertical axis represents the power spectrum of
4 frequency bands.

Moreover, VR tasks tend to divert users’ attention (increasing external
attention). In states of low cognitive control, users’ focus tends to
be more internally directed, aligning with the observed increase in α
band power [52]. The elevation in β band oscillations is associated
with heightened attention. Consequently, high cognitive control is as-
sociated with an increase in β band power. These observations also
account for the differing classification results in Section 5.4.1, where
the classification accuracy for the α and β bands stands at 79.65%
and 75.67%, respectively, both of which surpass the accuracy observed
in the θ and γ bands. Hence, the stable neural patterns in these two
bands offer potential neural markers associated with cognitive control.
Utilizing these features allows real-time and objective assessment of
users’ cognitive control levels, enabling dynamic adjustments to the
system, which provides a foundation for designing adaptive VR/AR
systems [53–56].

7 CONCLUSION

In this study, we undertake a comprehensive investigation of the in-
fluence of emotions on cognitive control levels in VR, grounded in
the valence-arousal emotional model. We also employ multimodal
physiological signals to identify individuals’ cognitive control levels.
Our results highlight a significant enhancement in cognitive control
levels when users experience high-arousing emotions. Based on the
classification results using SVM, KNN, and deep learning, a classifi-
cation accuracy of 84.52% is achieved in recognizing high and low
levels of cognitive control. Furthermore, compared to single modality
(EEG: 82.68%; HRV: 71.24%; EDA: 71.03%, the fusion of multimodal
features markedly boosts classification accuracy 84.52%. Moreover,
the modalities offer complementary information. Notably, results from
time-frequency analysis reveal consistent neural patterns related to
cognitive control, with higher cognitive control levels associated with
diminished α oscillation energy and an increase in β oscillation en-
ergy. This foundational evidence enriches our comprehension of the
neural mechanisms underpinning cognitive control. It enables us to
gain insights into users’ cognitive control levels without causing any
disruption, facilitating dynamic adjustments of tasks within VR/AR
applications for a more harmonious HCI.
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