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Figure 1: The experimental framework: emotion induction materials on the left, the AX-CPT cognitive task in the middle, and the
analysis and processing of multimodal physiological data on the right.

ABSTRACT

During VR cognitive rehabilitation, user performance in cognitive
tasks is influenced by their emotional states. However, most cur-
rent research primarily focuses on emotional valence, lacking a
comprehensive examination of the impact of emotions on cognitive
activities and their underlying physiological mechanisms based on
an arousal-valence dimensional model. To address this gap, we have
conducted an experiment in which participants are induced with four
distinct emotions using VR videos, followed by cognitive tasks. Con-
currently, we collect participants’ EEG, ECG, and GSR signals. The
results indicate that high arousal and high valence emotional states
significantly improve user performance in cognitive tasks (shorter
reaction times).

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Virtual reality; Human-
centered computing—Visualization—Visualization design and eval-
uation methods

1 INTRODUCTION

In VR-based neurorehabilitation, cognitive training tasks can en-
hance deficits in attention, perception, reasoning, and executive
functions. During the rehabilitation process, cognitive task perfor-
mance is influenced not only by the external environment but also
by the individual’s subjective feelings, particularly emotional states
related to cognition. Prior research has shown that emotions affect
task performance and responses, which vary among individuals [1].
As illustrated in Fig. 2, the impact of emotional arousal levels on
individual performance generally follows Hebb’s U-shaped curve
model [2]. In this model, excessively high or low levels of emo-
tional arousal tend to impede task performance, while a moderate
level of emotional arousal stimulates users to perform optimally.
However, most current research primarily focuses on the impact
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of emotional valence on cognition, overlooking the role of emotional
arousal. Mayer et al. [3] argue that cognitive load constrains informa-
tion acquisition and integration. Both positive and negative emotions
increase cognitive load and impair cognitive task performance. Con-
sequently, a unified and comprehensive conclusion regarding the
influence of arousal/valence emotions on cognition is still lacking.

Figure 2: Schematic illustration of the association between emotion
arousal levels and cognitive performance.

To this end, we design a VR-based emotion induction experi-
ment using 8 VR videos from Stanford’s public VR video datasets,
YouTube, and Steam for emotion induction [4]. Following this,
we conduct corresponding cognitive tasks (AX-Continuous Per-
formance Test) to investigate the effects of emotions on cognitive
activities. The performance of cognitive tasks is assessed based on
test accuracy and reaction time measures. Furthermore, we collect
electroencephalography (EEG), heart rate variability (HRV), and
galvanic skin response (GSR) signals as objective data to evaluate
their cognitive status. The overall framework of the experiment is
illustrated in Fig. 1.

2 MATERIALS AND METHODS
2.1 Experiment Apparatus and Participants
In this study, we use 1) an HTC Vive Pro HMD for displaying VR
videos, featuring a resolution of 1200x1080 pixels per eye and a
screen refresh rate of 90Hz, 2) an HP laptop computer equipped
with an Intel Core i9 processor, GTX 3080Ti graphics card, and
32 GB RAM, 3) an ANT Neuro EEG signal acquisition system
with 32 electrodes where all electrodes are referenced to CPz and
grounded to the forehead. The sampling rate of raw EEG data is set
to 512Hz. 4) a Shimmer3 GSR+ system for capturing HRV and GSR
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signals. The GSR data are recorded at a sampling rate of 200Hz.
We have recruited a total of 14 participants (7 male and 7 female),
aged between 21 and 45 (M=31.2, SD=3.16). The study received
approval from the local ethics committee.

2.2 Emotion Induction Material and Cognitive task
In accordance with the criteria used in prior studies, we select 8 VR
videos to induce four emotional states based on Russell’s arousal-
valence emotion model: Low Arousal/Low Valence (LALV), Low
Arousal/High Valence (LAHV), High Arousal/LowValence (HALV),
and High Arousal/High Valence (HAHV) [5]. The Self-Assessment
Manikin (SAM) scale is employed to assess arousal, valence, and
dominance [6].

Following emotion induction, we administer a classic psychologi-
cal cognitive control task called AX-CPT, for which we develop and
utilize a VR version. This paradigm assesses participants’ ability to
perform tasks without losing attention. The task consists of a total
of 200 trials. Accuracy is calculated as the number of correct trials
divided by 200. Ultimately, we record the task accuracy and average
reaction time.

2.3 Multimodal Physiological Data
For neurophysiological data, we employ EEGLAB for EEG pre-
processing. Specifically, the signals are then resampled to 128 Hz
and re-referenced to facilitate faster feature extraction. A bandpass
filter from 4 to 47 Hz is applied to the signals. Visual inspection is
conducted to remove any abnormal signals with amplitudes exceed-
ing ±100 (μν). Lastly, independent component analysis (ICA) is
used to remove artifacts. Based on the processed data, we utilize
the Welch method in Python-MNE to calculate the power spectral
density (PSD) features for each electrode in the θ (4-7 Hz), α (7-13
Hz), β (14-29 Hz), and γ (30-47 Hz) bands.
For HRV analysis, we use global or local thresholding for QRS

detection. Detected NN intervals are corrected through algorithms
and visual inspection. NN intervals are interpolated linearly at
4 Hz. Time-domain features include SDNN, RMSSD, PNN50.
Frequency-domain features encompass LF power(0.04–0.15 Hz),
HF power(0.15–0.4 Hz), and LF/HF.
For GSR signal, extracted features include mean skin resistance,

mean of derivatives, proportion of negative derivatives, count of
local minima, average rising time, spectral power in 0-2.4 Hz, zero-
crossing rate of skin conductance slow response (0-0.2 Hz), and
zero-crossing rate of skin conductance very slow response (0-0.08
Hz).

2.4 Experimental Procedures
All participants willingly took part in the study and provided written
informed consent before the experiment. The experiment com-
menced with the display of a fixation cross on the VR screen. Sub-
sequently, participants randomly viewed one of the 8 VR videos.
Then filled out the SAM emotion questionnaire. Following that,
the AX-CPT cognitive task was administered. The aforementioned
process was carried out a total of 8 times, and each participants
watched all 8 videos. Each VR video had an approximate duration
of 3min30s, while the cognitive task lasted around 5min. The entire
experiment lasted for an hour and a half.

3 RESULTS

In this study, the Wilcoxon signed-rank test is used to analyze the
differences in accuracy and reaction time of the cognitive task across
different emotional states. The significance level for all experiments
is set at 0.05. The results, as shown in Table 1, indicate that there
are no significant differences in the accuracy of the cognitive task
among the four emotional states. However, the reaction time for the
HAHV emotional state is significantly lower than the other three
emotional states (p = 0.028).

Table 1: The accuracy and reaction time of the cognitive task across
different emotional states (* = p < 0.05).

Emotion Reaction Time (s) Accuracy

HAHV 26.449* 97.67

HALV 27.511 98.17

LAHV 29.183 97.83

LALV 29.648 98.16

The results from the physiological data are shown in Table 2,
there is a significant decrease in SDNN (p = 0.017) and a significant
increase in LF power (p = 0.014) during the HAHV emotional state
compared to the other three emotional states, indicating activation
of the sympathetic nervous system. Moreover, there is a significant
decrease in α band power (p = 0.023) in the frontal lobe, which
aligns with previous research suggesting an inverse association be-
tween α band power in the frontal lobe and cognitive load. In the
HAHV emotional state, participants experienced higher cognitive
load, leading to a reduction in α power.

Table 2: Physiological features during AX-CPT task in different emo-
tional states (* = p < 0.05).

Emotion SDNN LF power α

HAHV 26.78* 73.89* 0.34*

HALV 30.45 68.23 0.42

LAHV 32.37 60.67 0.56

LALV 40.54 64.53 0.63

4 CONCLUSION

This study aimed to investigate the impact of different emotional
states on cognitive activities, drawing upon Russell’s arousal-valence
model of emotion. The results demonstrate that experiencing a high
arousal-high valence emotional state significantly improves perfor-
mance in cognitive tasks, accompanied by the activation of the
sympathetic nervous system. Additionally, there is a significant
decrease in α band power in the frontal lobe. These physiological
markers can serve as reliable indicators for assessing cognitive ac-
tivities and play a crucial role in guiding the adaptive adjustment of
VR rehabilitation systems, thereby enhancing their effectiveness in
promoting cognitive improvements.
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