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Abstract
The rapid creation of 3D character animation by commodity devices plays an important role in enriching visual content in
virtual reality. This paper concentrates on addressing the challenges of current motion imitation for human body. We develop
an interactive framework for stable motion capturing and animation generation based on single Kinect device. In particular,
we focus our research efforts on two cases: (1) The participant is facing the camera; or (2) the participant is turning around or
is side facing the camera. Using existing methods, camera could obtain a profile view of the body, but it frequently leads to
less satisfactory result or even failure due to occlusion. In order to reduce certain artifacts appeared at the side view, we design
a mechanism to refine the movement of the human body by integrating an adaptive filter. After specifying the corresponding
joints between the participant and the virtual character, the captured motion could be retargeted in a quaternion-based manner.
To further improve the animation quality, inverse kinematics are brought into our framework to constrain the target’s positions.
A large variety ofmotions and characters have been tested to validate the performance of our framework. Through experiments,
it shows that our method could be applied to real-time applications, such as physical therapy and fitness training.

Keywords Character animation · Motion capture · Retargeting · RGB-D camera

1 Introduction

The emergence of commodity depth camera gives rise to
the possibilities of rapid creation of character animation for
novice users. A prevailing idea is to capture the motion of
real human and generate an animated character simultane-
ously. Although some toolkit developments, such as [12],
have facilitated basic process of motion capture for human
body, it is impossible to use the captured data to create ani-
mation directly due to the low quality. Recent works [15,29]
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focused on enhancing the capturing result using single RGB-
D camera, but they hardly can be operated interactively.

After the motion is captured, the retargeting process
will adapt the motion clip to 3D character. Early research
papers [3,8,19] mainly focused on the transformation of
motions between characters with different sizes or topolo-
gies. The transformation was generated by solving an opti-
mization problemwhich ismade up of geometric constraints.
Recently, researchers tended to acquire the transformation
through an existing database which comprises thematches of
corresponding joints [1,28]. However, the retargeting result
was unavoidably affected by the content of the database.
In this paper, we design an interactive framework for sta-
ble motion capturing and animation generation using single
Microsoft Kinect device. We capture the motion and retarget
the clip to virtual character. Figure 1 summarizes the pipeline
of our framework.

According to our observation, two cases often appear for
most applications using a single RGB-D camera: (1) The
participant is facing the camera; (2) the participant is turning
around or is side facing the camera that the camera obtains a
side view of the body. Considering the computation require-
ment, for single RGB-D camera, existing methods fail to
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Fig. 1 Framework overview

capture the motion of turning around and motions in side
view due to self-occlusion. So we propose a set of schemes
to obtain better results when self-occlusion happens. Dur-
ing the motion retargeting stage, for humanoid characters,
we control target character in a quaternion-based manner.
For non-humanoid characters, we first recognize the user’s
action by a classifier, and then, we map the motion to the
target character. To further improve the animation quality,
inverse kinematics (IK) are brought into our framework to
constrain the target’s positions. Our innovative contributions
are listed as follows:

– We propose an adaptive filter to estimate the rotation
angle and direction of the user using a single RGB-D
camera. It can recognize the action of turning around and
capture the motion in real time.

– We design a practical motion retargeting method for
humanoid and non-humanoid characters.

– We devise a motion refinement technique based on IK.
It can enhance the performance of target character’s
motion.

The remainder of this paper is organized as follows. After
briefly discussing the prior works in Sect. 2, we introduce the
workflow of our motion caputure approach in Sect. 3. The
motion retargeting process is discussed in Sect. 4. Section 5
introduces the algorithms for IKcalibration andoptimization.
Section 6 documents the experimental results and introduces
the applications we have developed. Finally, Sect. 7 con-
cludes the paper with necessary discussions.

2 Related works

Our research is closely relevant to motion capture and retar-
geting techniques. Self-occlusion is a major problem which
reduces the quality of motion data. Thus, we also list several
methods which handle self-occlusion.

Motion capture techniques based on commodity depth cam-
eras are popular in recent years. Since the emergence of
Microsoft Kinect, motion capture algorithms and applica-
tions [15,18] based on this type of camera are well studied.
Liu et al. [15] created local correspondence between optical
captured motion data and Kinect captured motion data, and

built the relationship with Gaussian process. The posture was
reconstructed by searching the Kinect input in the local GP
models. Severalworks [4,29,31] focused on the improvement
of tracking result with single RGB-D camera. Among these,
Ye et al. [31] devised a real-time approach to estimate the
pose and shape from depth images by combining Gaussian
mixture model with articulated deformationmodel. The pose
was estimated through probability density estimation with a
body template.

Other methods of user-character motion capture were
implemented in [14,20,27]. Mousas et al. [20] extended the
regular structure of the hidden Markov model (HMM) and
trained the HMMon amotion dataset containing movements
of human dance. The system can predict the corresponding
dance motion according to the user’s current pose, and the
user is able to dance with a virtual character wearing motion
capture suit and a head-mounted display (HMD).

Motion retargeting transfers the motion from one character
to other virtual characters and generates new natural anima-
tion. In skeleton-based animation, motion retargeting is quite
helpful. A detailed survey in this field can be found in [10].
The majority of our work is related to motion retargeting
techniques. Motion retargeting techniques can be gener-
ally divided into two categories: constraints-based method
and data-driven method. The former obtains the transfor-
mation through a set of geometric constraints or physical
constraints [7,24], such as the angles of joints, the positions
of end effectors, or the dynamic formulations. Constraints-
based method is still dominant in industry applications
for its simplicity and effectiveness for real-time interac-
tions. The latter models the character behavior based on a
motion library [5,11,23], which employs decision-making
mechanism and transforms the motion to other characters.
Data-driven method is useful to generate motions with vari-
ations.

In addition to humanoid characters, motion retargeting for
non-humanoid had been studied by [25,26,30]. These meth-
ods realized arbitrary motion mapping and provided a new
way for real-time character control.

Data handling for self-occlusion is used to improve the
quality of motion clip before retargeting. Inverse kinemat-
ics (IK) methods were commonly employed to deal with
occlusion and losses of joints when body moves [9,13,17].
Grochowet al. [9] computed natural looking poses by solving
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a constrained optimization problem. Lv et al. [17] formulated
data-driven inverse dynamics using a set of reference poses
and dynamics data. It succeed in reconstruction of motion
using prerecorded dynamics data. In our framework, IK con-
straints are applied on several joints and solved in parallel.

3 Robust motion capture based on RGB-D
camera

In our technique, users perform actions in front of a Kinect.
We take the joints extracted by Kinect SDK as inputs, and
then, we apply the captured motion to virtual character to
generate animation. However, the extracted joints are incor-
rect in many cases, especially when a user is turning around
or performing some actions on his side. Self-occlusion usu-
ally occurs in these cases. To improve the captured result, we
propose an adaptive filter. Our adaptive filter is illustrated in
Fig. 2. The main contribution is to estimate the turning angle
and direction. As shown in Fig. 2, the information of three
parts, which include shoulders, hips and face, are considered
in the filter.

3.1 Estimation of turning angle

As shown inEq. 1, the turning angle is predictedby three parts
Es , Eh and E f , which represent the estimation angle based
on shoulders, hips and face information. In this equation,
0 ≤ λs, λh, λ f ≤ 1 and λs + λh + λs = 1. Each term will
be explained in the following sections. The turning angle is
calculated as follows:

Φ = λs Es + λh Eh + λ f E f . (1)

Estimation from shoulders (Es) is related to the shoul-
der spacing Ls . The first step of the estimation is to detect
whether the human body is moving or still. We devise a

threshold segmentation method inspired by [22]. We record
several groups of shoulder spacing data into motion curves
which contains the actions of turning around in front of the
camera, and then, we make several statistics on parameters.
Finally, we calculate the maximum dmax and the minimum
dmin of shoulder spacing. The calculation for dmax is formu-
lated as:

dmax = max

⎛
⎜⎝w f ∗ wt ∗

⎛
⎝ ∑

i∈B f

Li

u f
−

∑
j∈Bt

L j

ut

⎞
⎠

2
⎞
⎟⎠ . (2)

In Eq. 2, w f is the proportion of points facing the camera
in themotion curve,wt is the proportion of other states points,
and u f and ut are the numbers of points facing the camera
and points in other states. B f and Bt are the sets of frames, in
which the human body is facing the camera or in other states.
Li and L j are the values of shoulder spacing at the i th and
the j th frame. The minimum dmin is calculated in the same
way.

After we tested 50 people, we found that dmax is 0.35
and dmin is 0.25. When the value of shoulder spacing Ls is
larger than dmax, we consider that the human body is facing
the camera. On the other hand, when Ls is less than dmin, the
human body is side facing the camera. Otherwise, the human
body is between these two states. An example is shown in
Fig. 3.

The vibration on the positions of bone joints captured
by Kinect will degrade the quality of follow-up animations.
Since the angle of body turning is related to the length of
bone spacing, if the vibration is not processed, the virtual
character will tremble when it rotates. In each frame, we set
the compensation value L loss to remove the vibration. L loss

is computed by gradient smoothing as follows:

L loss = Lstart − Lend

ds
�t, (3)

Fig. 2 The procedure of our filter. The symbols in red are the input of our filter, and the symbols in green are the intermediate variables (color
figure online)
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Fig. 3 The workflow of our filter. In the first row, from left to right, it illustrates the 2D distance between the hip joints, the values of joint at
different stages. The second row shows the orientation of the virtual character corresponding to the motion curve

where Lstart and Lend denote the length of shoulder spacing
in the start frame and the end frame. �t is the time interval
between the start frame and the i th frame. The step length ds
is a constant value.With L loss, we can transform the length of
shoulder spacing into angle by the following linear mapping:

Es = π (Ls + L loss)

2 (dmax − dmin)
, (4)

where Ls is the value of shoulder spacing and dmax and dmin

are the thresholds mentioned above.

Estimation from hip (Eh) is obtained using the hip spacing
Lh . The calculation of Eh is the same as that of shoulders,
but the values of dmax and dmin are different from those of
shoulders. Technically, the maximum is 0.17 and minimum
is 0.05. According to the experimental experience, we found
it is unstable to predict the turning angle only by hip joints or
shoulder joints information. Through shoulder, hip and face
information, we sum the weighted value to obtain the final
turning angle. Since the change of shoulder spacing length is
relatively stable, the weight of shoulder (λs) is larger (0.6).
The weight of Eh is 0.3, and the weight of E f is 0.1.

Estimation from face (E f ) mainly uses the rotation angle of
face Φ f . Kinect obtains the rotation angle of face according
to the position of the five joint points (the mouth corners, eye
corners and nose). Φ f is reliable when the human body is
facing the camera, so we set the E f = Φ f and coefficient
λ f to be 0.1. When the body turns more than 60◦, the face
information will be lost and Φ f will be incorrect and unsta-
ble. Here we will reduce the coefficient λ f to 0 and increase
the coefficient of the crotch λh to 0.4.

3.2 Estimation of turning direction

We use the rotation angle of human body to divide the space
into two regions.When the person is facing to camera, k = 1.

When theperson is back to camera, k = −1.TheZ-axis infor-
mation of shoulders represents different rotation directions
in different regions, and the parameter k represents the region
where the previous frame model is located. We explain the
algorithm (Algorithm 1) of turning direction estimation.

Algorithm 1 Turning direction estimation.
Input:

the depth of left shoulder joint jzLsh ,
the depth of right shoulder joint jzRsh ,
the direction of last frame k.

Output:
the direction of current frame ε.

1: Compare the depth values of shoulder joints
2: if jzLsh > jzRsh then
3: the current direction ε = k;
4: else {jzLsh < jzRsh}
5: the current direction ε = −k;
6: end if
7: return ε;

Parameter ε is used to control the direction of target model
rotation. If ε is 1, it means that the model rotates to the left,
otherwise the model turns right. We control the change of
ε by comparing the z-axis information of left shoulder joint
jzLsh and right shoulder joint jzRsh . Due to the difficulty of
capturing at body turning process, we preset a turnaround
animation [6] and retarget to the target model based on the
angle of body turning eventually, so that the turning motion
of target model can become more realistic.

4 Motion retargeting for virtual characters

In our framework, both humanoid and non-humanoid char-
acters are able to be animated. We transfer the motion from
real human to virtual characters in a straightforward manner.
For humanoid character, the rotation of each joints which are
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extracted byKinect is copied to character. For non-humanoid
character, we classify the motion at first, and then, we ani-
mate the character using stored motion data.

4.1 Joints matching

A skeleton hierarchy should be generated after Kinect
extracts all joints from real human. The first step is to set
up the hierarchy. As shown in Fig. 4, the number of joints
and the structures is different between characters.We define a
dictionary to store the skeleton structure. Each term in the dic-
tionary records the relationship of joints between real human
and virtual characters.

The skeleton segment T in virtual character consists of
two parts: base joint jbase and leading joint jlead. jbase con-
tains the positions of parent node of the skeleton segment
T and jlead contains the positions of leaf point. A group of
skeleton segments which are connected each other constitute
a chain. Technically, the leading joint will rotate around the
base joint, and this rotation will be used to implement the
motion retargeting in Sect. 4.2.

For the non-humanoid characters, we match a group of
human joints with the joints of characters according to the
structural similarity. For example, we believe that the leg of
real human should control the leg of the deer character, and
the spine of real human should affect the neck of the plant
model. We set up the connections between them and deform
the character accordingly. However, the movement of the
whole body cannot be reproduced very well, so we introduce
a local classifier to improve the animation in Sect. 4.3.

4.2 Rotation angle of bones

Like the method in [1], we extract the rotation axis and rota-
tion angle of bones from the motion sequence. In each frame
of the captured motion sequence, the bones of human will
perform a rotation around its base joint. We calculate the
direction vectors, s and t, of all the bones between human
body and target model. By calculating the two-frame direc-
tion vector of the skeleton segment, the rotation angle θ and
rotation axis c canbe solved.The calculation canbedescribed

Fig. 4 Skeletal structures for different characters

as follows:

ci = si × ti , (5)

θi = arccos

(
si · ti

‖si‖2 ‖ti‖2
)

. (6)

Here, c = (cx , cy, cz) is the axis of rotation, and θ is the
angle of rotation. With these axis and angle, the rotation of
skeleton segment can be expressed as a quaternion q:

q = cos
θ

2
+ (

cx i + cyj + czk
)
sin

θ

2
. (7)

We simplify the representation of quaternion by q =
(c, θ). The bone of target model should rotate θ◦ around
the axis c, getting the new rotation value for each joint. We
bring in p = (jlead, 0), and then, the specific calculation is as
follows:

Rotate (jlead,q) = qpq−1 (8)

4.3 Local classifier

Motion cannot be transferred to non-humanoid character
directly, so we use another way to create the animation.
We recognize the user’s action and animate the character
using stored motion data. Then, a module in Kinect SDK
is employed to recognize action. The module can provide
some useful information, including whether it is a whole
body movement, whether the movements of the left body
and right body are symmetrical, whether it contains hand,
etc. The module also contains a classifier which is imple-
mented in SVM.

To train the SVM, we select ten types of actions, and each
of them is recorded about one minute. Then, we segment the
sequence and label the correct and incorrect sample which
amount to 500.After training, the accuracy reachesmore than
85%. During the runtime, when the user enters a new action,
the user’s actionwill be identified by the trained classifier and
the virtual character will perform the corresponding motion.
For the unrecognized actions, the framework will wait for the
user to re-enter. The classification algorithm (Algorithm 2)
is as follows:

5 Constraint of inverse kinematics

Quaternion-based method can transfer the rotations of
bones, but it may contain artifacts like foot skating due to
missing joints or occlusion. As shown in Fig. 5, when the
human body squats down, the feet of target character will be
floating using direct retargeting. In order to transfer accurate
transformation for joints, we define an offset for each joint

123



854 N. Kang et al.

Algorithm 2 Motion classification and recognition.
Input:

the motion of human ms ,
Output:

the motion of non-humanoid model mt .
1: Determine whether it is a whole body movement or an upper body

movement;
2: Determine whether it is a movement of two hands or a movement of

single hand;
3: Determine whether it contains gesture information;
4: Identify the user’s motion ms ;
5: Mapping to get the target’s motion mt ;
6: return mt ;

Fig. 5 Pose translation constraint. a The input posture of real human;
b the posture of target character without translation constraint; c the
posture of target character with translation constraint

based on the coordinates of the root joint. We estimate the
offsets for all joints by calculating the offset vroot of root
joint.

vroot = σ

∥∥∥jwaist − j
′
waist

∥∥∥2 , (9)

vi =
{
vroot, if ji belongs to the upper body
0, otherwise.

(10)

The offset of waist joint, which is usually regarded as root
joint, is calculated by the subtraction of positions between the
current frame jwaist and the last frame j

′
waist. Here, the offsets

of joints in the upper body are consistent with vwaist, while
the y-axis position of joint in the lower body is unaffected
by the waist offset. σ is used to map the displacement of real
person to the virtual scene according to a certain proportion.
The value of σ is greatly relevant to the distance between the
human and the camera.

Facing the motion of human jumping, we make the wrist
bone point position when the human body is standing still
as a demarcation point pwrist. When the human jumps, the
position of the wrist joint will be higher than pwrist. At this
time, we add this offset constraint to the whole body of the
model. The position of thewrist joint will be lower than pwrist
when the human squats down. At this point, we only add
this constraint to the upper body of the model. The motion
retargeting results of the human body jumping is shown in
Fig. 6.

Fig. 6 Motion retargeting results when the human jumps

Occlusion may appear and give rise to wrong animation.
In order to reduce the artifacts, the posture of charactermodel
is calibrated by IK. Given the original motion of human ms ,
our aim is to derive a set of constraints to refine the char-
acter. In order to be more coherent with the motion, the IK
constraints are placed on limbs of the target character, which
are interactively specified. Here we consider 5 IK chains,
which are reflected in different regions (waist, hands and
feet). Combining the constraints of IK, we devise the fol-
lowing algorithm (Algorithm 3) for the motion retargeting
process:

Algorithm 3Motion retargeting for different characters.
Input:

the origin posture ms = {
js1 , js2 , ...., jsn

}
of human,

the posture mt = {
jt1 , jt2 , ., jtn

}
of target model,

the skeleton structure dictionary E .
Output:

a new posture m
′
t for the target model.

1: Match joints and get bones S from ms , T from mt ;
2: if target model is a non-humanoid model then
3: Recognize human motion based on classifier
4: Get the motion data m

′
t of target model according to defined

mappings
5: else {target model is a humanoid model}
6: for all (Si , Ti ) ∈ E do
7: Calculate the rotation axis ci and rotation angle θi ;
8: qi = (ci , θi );
9: j

′
ti = Rotate

(
jti ,qi

)
;

10: j
′
ti = jti + vi ;

11: m
′
t = m

′
t ∪ j

′
ti ;

12: end for
13: end if
14: Calibration the posture m

′
t by IK

15: return m
′
t ;

6 Experimental and application

Our framework is implemented in Unity and C#. All the
experiments are tested on a desktop with Intel� CoreTM i7-
6700 CPU (3.40 GHz), 32GBRAM,NVIDIAGeForce GTX
1080 and Microsoft Kinect 2.0.

The experiments are divided into two groups: single user
and multiple users. We select several CG models from [2]
which include humanoid and non-humanoid characters. We
test our framework mainly in four scenarios:
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– Single user performs actions in front of the camera.
– Single user turns around or performs actions on his/her
side.

– Single user performs physical exercise with equipments.
– Multiple user performs actions in front of the camera.

6.1 Single user motion retargeting

In this section, we evaluate our method on the task of sin-
gle person motion retargeting, simulating the movement of
human body as new motion frames are received. From the
first row to the fifth row in Fig. 7, we demonstrate anima-
tion results of different characters with the captured human
motion data, which fully demonstrates the robustness of our

method. Each of these models has 20 joint points, which
are connected to 17 groups of bones, but their bone length
and shape size are different from each other. We select eight
different actions including leg lifting, turning around and
some actions with occlusion, such as squating. These actions
are well retargeted from real human to virtual characters.
The sixth row and seventh row in Fig. 7 show the animation
results of non-humanoid characters. For example, the action
of lifting leg is retargeted to the deer leg, and the swing of
the hand is transferred to the wings of the butterfly. For some
complex actions, such as walking and squatting, we identify
them through the classifier and then drive the model to make
the corresponding movement. Compared with the traditional
methods, which use no occlusion action or the processed data

Fig. 7 The retargeting results of different characters from the motion captured by Kinect
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Fig. 8 The comparison of side-view result

as input, we can directly deal with the motion data captured
byKinect and improve the performancewhenocclusions take
place.

We also compare the action of turning around. As illus-
trated in Fig. 8, three cases are enumerated, including “Only
Retarget,” “Retarget + Filter” and “Retarget + Filter + IK.”
When the filter and IK are disabled, all results are incorrect.
Only using the direction vector of hip bone to calculate the
rotation angle of human, it cannot identify the whole pro-
cess of the human body turn. When the body is over 30◦
sideways the camera, the model will not track properly. And
when the joint point of human body is blocked, the character
model will have deformation action and the method is not
available. After the filter is enabled, the rotation informa-
tion of human body can be well captured. The rotation angle
of character model is consistent with the angle of the real
human rotation, but some poses are incorrect, e.g., squatting.
If both the filter and IK are enabled, the transferred poses are
the best. The posture solved by IK can be used to calibrate
the pose of character model, which makes the retargeting of
human sideways movement be more accurate and stable.

To handle some special cases, we need tomodify the influ-
ence factors λs , λh and λs . Our system uses the shoulder
spacing and hip spacing to predict the turning angle. When
facing the user only turns the upper body, we need to adjust
the influence factor of the hip spacing λh to 1, λs and λ f to
0. So when the upper only turns around the upper body but
remains the lower body, we can still reproduce themovement
of the human body. The results are shown in Fig. 9.

The results of our experiments are subject to the accuracy
of the input joint point information. We tested our methods
with severe occlusion and compared it with the untreated sit-

Fig. 9 The results of only turning around the upper body

Fig. 10 The comparison of ourmethodwith direct retargeted animation

uation. For the occlusion problem, we mainly consider the
situation when the human is side to camera.When the human
is face to camera or back to camera, we will directly use the
data captured by Kinect to retarget and cannot correct the
error caused by keypoints missing. We tested our method
with severe occlusion and compared the results of ours with
direct retargeted animation. Figure 10 shows the experimen-
tal results with occlusion at three different angles. When the
human is face or back to camera, Kinect can estimate the
bone structure of human and the final result only occurred
in some areas. However, the joint information predicted by
Kinect has a very serious deformation in the case of side-
ways. For this reason, we introduced filter and IK method
to keep the skeleton in a reasonable posture. In addition, we
tested ourmethod on a group of postures appeared in existing
work [16]. The results are demonstrated in Fig. 11.

6.2 Multi-user motion retargeting

Through parallel processing, we can achievemotion retarget-
ing from multi-person video as shown in Fig. 12 When more
than one person appears in front of the camera, we handle
multi-person motion data in multi-thread to ensure the real-
time performance of the system. In Table 1, we compare the
time consumption of our algorithm in different situations.

6.3 Quantitative evaluation

Moreover, we record the motion curves of human and virtual
character during the motion. The curves contain values of the
joint information. In Fig. 13, we illustrate the motion curves
of different joints (left hand and left foot). The red curve is
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Fig. 11 The comparison of our method with existing method [16]. From a–i, the upper is the input motion and the retargeting result from [16], and
the lower is the input motion and the retargeting result of our method

Fig. 12 Multi-person motion retargeting

the human motion captured by OptiTrack [21], the green one
is captured by Kinect 2.0 and the blue curve is the motion of
target model animated by our method. After the comparison,
we believe that our method can extract the motion which is
close to the real one.

Table 1 Computation efficiency of our method

Method FPS Computation

Single person 60 CPU single thread

Multi-person 50 CPU multi threads

6.4 Applications

Our framework provides user a real-time interface to control
virtual characters and interact with virtual environments. As
a simple example, we developed “Personal Trainer” shown
in Fig. 14. This application is used to help users feel immer-
sive and interesting when they are doing exercises. Also, this
application can provide useful instructions of the fitness pos-
tures. In this application, a single Kinect camera is employed
to capture themotion.We predefine the referencemotion and
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Fig. 13 Quantitative evaluation of motion curves recorded by three
different approaches. a Themotion curve of left hand joint;b themotion
curve of right foot joint

animate the virtual character to instruct users. Users can fol-
low the instructions and create their own animations.

7 Conclusions and limitations

In this paper, we develop a real-time framework for produc-
ing virtual character animation using singleMicrosoft Kinect
device. Our framework is capable of handling complex
human motions like turning around as well as self-occlusion.
The success of our framework is hinging upon the following
key factors: (1) The adaptive filter is capable of estimating
the rotation of human body and recovering the motion when
turning around in 360◦; (2) the quaternion-based method
for motion retargeting is helpful for reducing vibration and

Fig. 14 An example of interactive application. a User chooses the type
of fitness; b user does exercises according to the reference motion

noises; and (3) the motion refinement adjusts the posture of
the entire body through IK constraints which enhance the
motion transfer result in side view.

There are several limitations of our method. First, our
method is dependent on the accuracy of the input joint infor-
mation. The missing keypoints in the capture stage cannot
be restored in our final result. Second, the influence fac-
tors are set manually at present. It is practical for specific
scenes, but we believe it may increase the estimation results
when the settings are modified dynamically. Third, although
IK constraints improve the final motion, it seems unnatural
for some cases. In the future, we plan to employ data-driven
approach to enhance the animation. In the meantime, immer-
sive devices such as HMD are considered to be coupled with
our technique in its application.
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