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Abstract
Modeling motion dynamics for precise and rapid control by deterministic data-driven models is challenging due to the natural
randomness of human motion. To address it, we propose a novel framework for continuous motion control by probabilistic
latent variable models. The control is implemented by recurrently querying between historical and target motion states rather
than exact motion data. Our model takes a conditional encoder-decoder form in two stages. Firstly, we utilize Gaussian Process
Latent Variable Model (GPLVM) to project motion poses to a compact latent manifold. Motion states could be clearly recognized
by analyzing on the manifold, such as walking phase and forwarding velocity. Secondly, taking manifold as prior, a Recurrent
Neural Network (RNN) encoder makes temporal latent prediction from the previous and control states. An attention module
then morphs the prediction by measuring latent similarities to control states and predicted states, thus dynamically preserving
contextual consistency. In the end, the GP decoder reconstructs motion states back to motion frames. Experiments on walking
datasets show that our model is able to maintain motion states autoregressively while performing rapid and smooth transitions
for the control.

CCS Concepts
• Computing methodologies → Motion processing; Motion capture; Motion path planning; Learning latent representations;

1. Introduction and Related Works

Modeling motion dynamics as a motion controller from mocap data
is challenging. The main difficulties hinge upon two aspects. On the
one hand, it isn’t easy to distinguish between the intra-class varia-
tion of motion states and the natural randomness of human behav-
ior. Unlike robotic machines, motion cannot be made precisely by
muscles and mind at each repeat. While adequate data are essential
in data-driven methods, the gap between state variations and natu-
ral randomness becomes hard to disambiguate. On the other hand,
explicit control signals are usually inadequate to explain the com-
plex relationship among skeleton joints and temporal coherence.
For example, changing the walking speed defined by singular joint
velocity omits other joint positions, which could cause inconsis-
tency when lacking contextual transitions in original data.

Many studies represent motion sequences as certain states along
with clips and random variations at each posture. For motion with-
out apparent separations, motion states are usually manually la-
beled. Such deterministic methods tend to perform averaged mo-
tion, regardless of a complex expression. In these cases, motion
randomness is modeled by adding noises to data, generating a re-
alistic synthesis similar to the original one. As a matter of fact,
probabilistic methods are intuitive to model motion randomness.
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[MC12,KH10] separate clips of periodic walking into several phase
states. Stable states and random variations are connected via Gaus-
sian Process (GP) mappings in each phase. [WFH07,UFG∗08] ap-
ply latent variable models (LVMs) on GP, where motion states are
implicitly represented as well. GPLVM constructs a latent manifold
where latent variables of motion poses are statistically distributed.
The states vary consistently as the latent path transits from one re-
gion to another.

While GPLVM is able to represent states and randomness of
motion, it doesn’t directly model motion dynamics. First-order
Markov assumptions are widely used to construct dynamic systems
based on poses [WFH08, DTL11, UK12]. For fast response to con-
trol, Levine et al. [LWH∗12] generates novel transitions by discov-
ering latent manifold structure. However, precomputed strategies
are not usually feasible in real-time applications since there could
be a transition deficiency. Recently, neural networks are widely
used for modeling dynamic systems. Variants of the recurrent neu-
ral network are applied to update model parameters by previous
states and current input continuously [SZKZ20, GWE∗20]. Mao
et al. [MLS20] adapts motion prediction performance of RNN by
adding an attention module, which morphs original RNN input by
measuring sequential similarities. Holden et al. [HSK16, HKS17]
use deep network structures for motion synthesis and control.
These deterministic approaches do not directly model randomness,
so that similar motion states could be ambiguous. Recently, prob-
abilistic models have been proposed for character motion control.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Pacific Graphics (2021)
M. Okabe, S. Lee, B. Wuensche, and S. Zollmann (Editors)

DOI: 10.2312/pg.20211383 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/pg.20211383


R. Zeng J. Dai J. Bai J. Pan & H. Qin / Human Motion Synthesis and Control via Contextual Manifold Embedding

Figure 1: Our workflow of modeling motion dynamics with (a)
default control states and (b) target control states.

Henter et al. [HAB20] proposes normalizing flow for generative lo-
comotion synthesis. Ling et al. [LZCvdP20] apply variational au-
toencoders to construct two-frame manifold to disambiguate mo-
tion context. Different from them, our model constructs the mani-
fold from motion poses. Contextual information is learned from the
network afterwards to generate motion transitions.

To address the above issues, this paper proposes a novel ap-
proach to model motion dynamics for motion synthesis and con-
trol, combining neural networks with GPLVM to learn the spatio-
temporal relationship from motion data. The workflow is illustrated
in Figure 1. Basically, the function of motion dynamics (named
DYN) are modeled on a manifold embedding M by GPLVM
(Section 2.1). DYN receives current states (top arrow) and con-
trol (down arrow) states as context, outputting the estimation of
next motion states on M. The predicted motion states are back-
projected into a specific motion pose by FGP. DYN conducts mo-
tion predictions under default (blue) or target (red) control states,
which performs the synthesis of stabilization (Figure 1 (a)) and
transition (Figure 1 (b)) respectively. DYN is then fitted by a neural
network composed of a recurrent unit and an attention unit. The re-
current unit is used to predict latent variables as output, as it main-
tains and updates the hidden dynamic states over time. The atten-
tion unit is employed to edit the prediction by considering control
states as the target. Details of the network are in Section 2.2. The at-
tention mechanism adaptively compares prediction states with con-
trol states, which performs better than equal-weight methods with-
out attention. Qualitative and quantitative results are in Section 3.

In summary, the technical contributions can be listed as follows,

• We propose a novel framework for motion dynamics, which em-
beds observed motion data as distributions of latent variables on
a manifold, then fitting the dynamical function by RNN based
neural network.
• We design an attention unit in the network for target control of

motion state, which adaptively combines the historical context
with the target context.
• We utilize the proposed model for locomotion synthesis, in

which motion states are able to be arbitrarily edited by default
and target control.

2. Method

A motion sequence is composed of poses with continuous times-
tamps. Each pose is represented as frame data Yi ∈ RD with fixed

joint parameters, such as positions or rotations. The human pose is
constrained by skeleton topology and cooperation between relative
joints, which also limits the degree of freedom of Yi. As a matter of
fact, variations of Yi could be represented by fewer dimensions in
a specific group of motion sequences. We consider a probabilistic,
non-linear, non-parametric latent motion embedding:

Yi = FGP(Xi,Y), (1)

where the latent variable Xi ∈ Rd represents corresponding motion
state of the pose. FGP contains unified information shared by the
pose dataset Y = {Yi}, which helps to reconstruct latent variables
back to frame data. In Section 2.1, we explain how to construct
X = {Xi} and FGP from Y.

Next, we apply motion dynamics to the latent embedding. Future
motion is determined by its context, which refers to 1) previous
motion states as we do not wish to contain future information, and
2) target states that we wish to switch. We define the next motion
state as a function of current motion state Xt and control states Xc

t :

Xt+1 = DY N(Xt ,Xc
t ), (2)

where the previous state Xt ∈ R1×d obeying first order Markov as-
sumption as in [WFH08,DTL11]. The first-order assumption guar-
antees contextual consistency while responding quickly to state
variation. Xc

t ∈ Rn×d are control motion states indicating the tar-
get. Algorithm 1 provides motion synthesis with default and target
control states.

Algorithm 1 Motion synthesis with control

Input: Initial motion state X0 ∈R1×d , target state sequences CT ∈
RT×d

Output: Motion frames YT ∈ RT×D

1: function DYNAMICS(X0,CT )
2: for t = 0→ T −1 do
3: if Ct is not set then
4: Xc

t ← Xt
5: else
6: Xc

t ←Ct
7: end if
8: Xt+1 = DY N(Xt ,Xc

t )
9: Yt+1 = FGP(Xt+1)

10: end for
11: return YT
12: end function

2.1. Latent Motion Embedding

Motion Manifold Construction. Firstly, GPLVM maps unlabeled
motion poses to a compact, dimension-reduced latent manifold.
The manifold describes the prior distribution of latent variables
that represent corresponding motion states. Unified motion pat-
terns, such as the general motion style, are concluded by recon-
struction GP. The unified mapping function separates shared infor-
mation from motion states for a distinguishing latent manifold. By
considering the pose at each frame, the original motion dataset is
stacked into a data matrix Y ∈ RN×D, where N is the number of
total frames, and D is the number of frame dimensions each.

Following Lawrence [Law05], GPLVM finds a latent space
which embeds high dimensional data Y to compact, low-
dimensional latent variables X∈RN×d , where d�D. It formulates
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Figure 2: The network structure. It is composed of the embedding unit Θ, the temporal context unit Φ, the control context unit Ψ, and the
attention unit Ω. FGP reconstructs the input and output of the network to frame data.

Gaussian Process (GP) by the conditional probability of the obser-
vation data Y from the latent variables X , P(Y|X,α). The kernel
K(α) indicates the covariance of X, as well as the metric of motion
states variation in the latent space. A standard metric of K is the
radial basis function (RBF) kernel.

Latent variables X as well as kernel parameters α are optimized
with the objective function of the negative log-likelihood. It is ac-
complished by maximum a posteriori probability estimate (MAP).
Once the optimization is complete, given arbitrary latent variable
X , the distribution of a motion pose Y is a Gaussian p(Y ) =N (µ,Σ)
in a closed form:

µ(X) = FGP(X ,Y) = KX K−1Y, (3)

Σ(X) = k(X ,X)−KT
X K−1KX , (4)

where KX measures the covariance between Y and X by the same
kernel metric mentioned above. µ represents the mean estimation
of the pose from X , which is also the reconstruction method from
motion states to frame data. Σ indicates the confidence in it. The
lower the variance is, the higher the confidence is in reconstructing
plausible motion pose.

2.2. Contextual Motion Dynamics

Dynamical Net. In this section, we explain how to fit equation 2
with our DYN. The whole structure of DYN is illustrated in Figure
2. DYN is composed of the embedding unit Θ, the temporal context
unit Φ, the control context unit Ψ, and the attention unit Ω.

Firstly, the embedding unit Θ extracts feature of Xt before tem-
poral prediction:

Θ(Xt) = fm{ fc [ fm(Xt), fm(FGP(Xt))]}, (5)

where fm indicates Multilayer Perceptron (MLP) and fc refers to
vector concatenation. From the experiment, we find that adding
the features of reconstructed frame data speeds up network con-
vergence. The embedding unit Θ is also used for feature extraction
of Xc

t . Next, the temporal context unit Φ makes a prediction from
previous motion states Xt at each timestamp t. Φ consists of two-
layer Gated Recurrent Unit (GRU) fG1, fG2:

Φt+1(Xt) = Φ(Θ(Xt),ht) = fG2{ fG1 [Θ(Xt),ht1] ,ht2}, (6)

where ht = (ht1,ht2) indicating the hidden states of GRU at cur-
rent timestamp t. GRU updates ht for each iteration. Since ht
is calculated recurrently, hidden states could simultaneously en-
code short-term and long-range context information. For exam-
ple, hK iterates K times from initialization, accumulating context
at each t∈ [0,K−1]. Note that when predicting Φ1, the hidden
states ht,0 are determined by Ψ, as the same technique by Cho et
al. [CvMG∗14].

The network introduces control states Xc
t to morph the prediction

Φt+1 from previous states. After the embedding unit, Θ, the control
context unit Ψ is designed to recover the temporal context. The or-
der of Xc

t is crucial for states consistency but not explicitly encoded
in the feature yet. The formulation of Ψ is almost the same with Φ.
Different from Equation 6, Θ(Xc

t ) take place of Θ(Xt) as the input.
The output of Θ(Xc

t ) scale n times as the input contains n continu-
ous states. Another difference is the bi-directional because we hope
to extract as much context forward time as well as backward time.

Finally, feature of control states Ψt+1 and prediction states Φt+1
are merged by an attention unit Ω. Attention module takes a query
(q), key (K), value (V ) as input to obtain attentioned query (qatn).
After that, (q,qatn) are concatenated for keeping complete features
through forwarding:

qatn(q,K,V ) = ∑
n
i=1 so f tmax(qT ki)vi, (7)

fatn(q,K,V ) = fm{ fc [qatn(q,K,V ),q]}. (8)

Taking Φt+1 as q, Ψt+1 as K and V , Ω obtains Xt+1 as the output
of DYN. Here we set K =V to directly compare between Φt+1 and
Ψt+1, since they encodes Xc

t and feature prediction of Xt+1 to the
same domain:

Xt+1 = Ωt+1(Xt ,Xc
t ) (9)

= fatn
[
Φt+1(Xt),Ψt+1(X

c
t ),Ψt+1(X

c
t )
]
. (10)

The controlled data frame Yt+1 is obtained by Equation 1.

Network Training. We measure the prediction accuracy in both
the latent manifold space and the observed motion frame domain.
The loss of our network is defined as

L=∑
T
i=1(

∥∥∥Xi+1−DY N(Xi,X
h
i )
∥∥∥2

+λ

∥∥∥Yi+1−FGP

[
DY N(Xi,X

h
i )
]∥∥∥2

),

(11)
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Figure 3: Qualitative result for synthesis with stabilization, in-
cluding (a) locations of latent variables, (b) curves of the right knee
height changing with time and (c) samples of avatar movement.

where Xi+1 is corresponding latent variables of frame data Yi+1. Xh
i

is the historical state sequence from training data that matches to Xi.
The first term is the loss in the latent manifold space and the second
term is in the motion pose space. The hyperparameter λ balances
the relative importance of the two loss terms, which we emperically
set to 0.1 in optimization.

Our model learns the contextual distribution in the latent space.
During training, control states Xh

i match to historical state Xi in the
dataset. During synthesis, control states could be arbitrary target
states. Equation 11 forces the network output to share the same
distribution in both cases, even though the input states in the test
stage don’t appear in the training stage. Both original and control
states contribute to the next state of the system. After training, the
network learns to output by the combination of state inputs. For
motion transitions under control, we manually set control states so
that the output of DYN morphs to match the new target. Since the
target states gradually take part in the network input, the influence
on the output presents a smooth transition.

For network training, we need to prepare training pairs, includ-
ing motion clips, latent variables. We cut motion clips by a sliding
window with fixed width. We set T = 20 for our walking dataset.
Overlap between adjacent clips is set to 1 for continuous contex-
tual dependency. All sequences downsample from 120 Hz to 60
Hz. We design several standard techniques for the training. Adam
algorithm is employed to automatically calculates the derivatives.
We set the learning rate to 0.0001 and then multiplied it by 0.95 af-
ter each epoch. Dropout strategy is applied, and we set the dropping
rate to 0.1. The model is optimized in a mini-batch manner with a
batch size of 32 for 200 epochs. The training consumes around 20
hours on an NVIDIA Geforce RTX 2080Ti GPU.

3. Experiments and Evaluations

Our DYN is trained with the CMU locomotion dataset. We choose
12 sequences, 4000 frames of walking data from the same subject.
Each sequence varies in moving speed and stride length. We com-
pare the proposed model with networks without the attention unit
and the aid of GPLVM. Stabilization synthesis tests how motion
states preserve stable for long sequential synthesis, while transition
synthesis tests on how states varies from the original to the target.
The performance is evaluated both qualitatively and quantitatively.

3.1. Stabilization Synthesis

Once the initial states are set, DYN is able to synthesize motion
with any length. When no control states are received, the dynam-
ics of DYN are calculated as Figure 1 (a). In this case, synthetic
motion sequences are supposed to preserve stable motion states for
different initialization, such as movement speed and stride length,
while the walking phase changes periodically.

Figure 3 shows the synthetic results by three initial sequences
with different speeds, indicated by color lines including the slow
(orange), the medium (green), and the fast (blue). Latent variables
of synthetic motion sequences are showed in Figure 3 (a). Different
colors indicate different confidence scores on the GP reconstruc-
tion of plausible motion pose, high with red and low with blue. We
see all the latent variables locates on regions with high confidence,
which means plausible reconstruction quality of poses. Also, each
group of the latent variables gathers in a specific region, indicat-
ing that poses with different walking speeds are clearly separated
without intersection. The circles formed by latent paths explain the
periodic nature of walking. Movements of an avatar visualize the
reconstructed results. Figure 3 (c) shows reconstruction quality in a
complete view. Frames are sampled after constructing 1.5 seconds
in 6 Hz from 60 Hz of synthetic results. Considering the variation
of neighboring frames, the difference of speeds is still distinguish-
ing, demonstrating the synthesis stabilization. The curves in Figure
3 (b) indicate how the heights of the right knee change with time.
The movement patterns of a single joint repeat periodically, demon-
strating the synthesis stabilization in a partial view.

Figure 4: Heatmaps for measuring stabilization by MMD, (a) for
the model without attention and (b) for DYN.

Furthermore, we report quantitative results by statistics. The di-
rect comparison by frame error can not be made because original
motion sequences have fixed lengths that are much shorter than
synthetic sequences. We introduce MMD for quantitative compar-
ison with inadequate ground truth. Instead of analyzing frame by
frame, Maximum Mean Discrepancy (MMD) considers data distri-
bution between sequences. Recent work has extensively used ad-
versarial ideas [LCC∗17, WSH19] as discriminators to distinguish
between real and false data samples. In this paper, we randomly
choose 3 phases for each of the 12 original motion sequences as
initialization to synthesize 1000 length of motion. MMD calculates
every 40 frames of synthetic sequences of the 12 original motion
sequences. When the lowest value is obtained, we choose its index
to label the motion states of the clip. Then we count the ratio of
synthetic labels for a group with the same initialization label. The
results are shown in Figure 4 as heat maps. It compares the synthe-
sis stabilization of DYN (b) with the network without attention (a).
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Figure 5: Motion transition from one states to another. Footprints indicates touching on the ground.

The element (i, j) stands for the MMD ratio of label j in initial-
ization group i. The order of labels ascends as walking accelerates
so that motion states are similar to their neighbors. From Figure 4
(b), we can see that the MMD ratio distributes higher at diagonal,
indicating that the synthesis is distributed most closed to the orig-
inal initialization. However, Figure 4 (a) shows regions with high
ratios beyond diagonal, which means weak stabilization of motion
states. The reason for the large deviation might be caused by the
lack of attention unit. The network without attention treats previ-
ous states equally, regardless of the difference of motion dynamics
at every phase. The attention unit Ω in DYN adaptively learns mo-
tion dynamics by judging the importance at each timestamp, which
is more flexible for handling contextual variations.

3.2. Transition Synthesis

The transition synthesis results are illustrated in Figure 5. It can be
oberserved that the initial (left avatars) is relaxed and slow, while
the target (right avatars) is intense and fast. The transition (skele-
ton) is smooth without acute variation. Even without ground truth,
our model still performs smooth transitions from one state to an-
other. The reasons contribute to latent embedding and contextual
state control. On the one hand, the latent embedding by FGP dis-
tinguishes between minor noises from motion randomness and sig-
nificant variations of motion state, which helps to find the intrinsic
difference and blend them little by little as time proceeds. On the
other hand, the attention unit in DY N adaptively chooses between
the control states that contribute the most to the realistic context,
thus preventing sharp steer of the joint path.

Motion states should respond as quickly as possible when con-
trol happens. To compare the performance of state transition, we
randomly set initial and target control states to produce motion tran-
sitions. The control sequence Xc

t (t ∈ [1,K +C]) is constructed to
control motion from states of index label p to q, where the index la-
bel of Xc

t equals to p if 0 < t < K and equals to q if K < t < K+C.
We sample 400 sequences to apply 1-time variation by randomly
selecting the initial phase and label pair (p,q). Frame length of ini-
tial states and control states are set to constant, K = 100, C = 20.
Samples that fail to preserve initial states are deleted. We propose
similar metric in Section 3.1 by utilizing MMD as the measure-
ment. The MMD is calculated in a window size of 10 with a sliding

step of 1, and the current motion state is denoted by the label with
the lowest value. Because the initial and target label is not constant,
we represent them as Lp and Lq, respectively.

Figure 6: Agility of response to target control, comparing among
the model of DYN (blue), without attention (orange) and without
GPLVM (green). The ratio of initial states rp (a) and target states
rq vary along time.

Figure 6 shows the statistical comparison results of the proposed
DYN, model without attention, and model without GPLVM. The
label of Lt at each timestamp t equals Lp, Lq, or others, indicating
before, after, and during the transition, respectively. Their ratio of
them at t are named as rp,t , rq,t , ro,t respectively, rp,t + rq,t + ro,t =
1. Here we only draw figures of rp and rq. Figure 6 (a) shows curves
of rp changes by timestamp t. It reveals how the motion leaves from
initial states. The target states are set at t ∈ [110,130] named Lq,
where t ∈ [0,110] refers to initial states named Lp. All three curve
starts to decrease when target control happens. DYN (blue) and the
model without attention (orange) drops earlier than the model with-
out GP (green), which indicates quicker responses to various con-
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trol states. Two of them reach the lowest at about t = 140, while
most sample sequences do not preserve states rp. Note that rp,t of
the model without GP increases after t = 140, which indicates the
sample sequences that fail to transit to target states as their states
recover to Lp. Figure 6 (b) shows curves of rq by timestamp t. It
reveals how the motion reaches target states. We see the curve rq of
DYN (blue) raises the fastest, followed by the model without atten-
tion (orange). The former reaches a higher ratio than the latter after
t = 40, indicating that more sample sequences complete the transi-
tion to target states with a control length of C = 20. At the end of
each curve, the ratio drops a bit. The reasons are that some sample
sequences fail to preserve target states after Xc

t disappears. In this
case, more prolonged control states are required. In addition, the
curve of the model without GPLVM (green) barely not raises, as
most of the sample sequences fail the transition to the target states.

4. Limitations and Discussions

The dataset we use only contains walking samples with different
speeds, which are represented as swing strides of arm and leg and
the frequency of step. More variant motion data, e.g., running and
direction turning, can be used to explore the model’s capabilities. In
this case, direction invariant representation is required for reason-
able transition across motion clips. Furthermore, the motion mani-
fold is constructed by GPLVM, the required storage and optimiza-
tion time increase in proportion to the dataset scale. The Scalability
of the latent embedding is under investigation for various motion
datasets. In addition, our network structure is quite simple, while
powerful and informative networks with deep layers often lead to
better performance.

5. Conclusions

In this paper, we propose a novel framework to model motion dy-
namics by integrating GPLVM with a neural network. We apply
GPLVM, a probabilistic, non-linear, non-parametric latent variable
model, to construct a motion manifold. Distributions on the man-
ifold describe the randomness of motion and movements of latent
variables on the manifold represent the intra-class variation of mo-
tion states. To interpret motion dynamics in manifold space, we
further design a recurrent-based neural network. The recurrent unit
maintains historical context to keep temporal consistency, while the
attention unit adaptively responds to the control context to produce
a smooth transition to target motion states.

We have evaluated our model for synthesis stabilization and mo-
tion transition qualitatively and quantitatively. The qualitative re-
sults validate our model’s ability to maintain walking speed, stride,
and period for long-term motion synthesis, while changes smoothly
when arbitrary control occurs. The quantitative comparison with
models without attention and GP further proves that our model can
better match the features of motion behavior and quickly responds
to instant target control.
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