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Abstract
Existing lightweight networks perform inferior to large-scale models in human pose estimation because of shallow model
depths and limited receptive fields. Current approaches utilize large convolution kernels or attention mechanisms to encourage
long-range receptive field learning at the expense of model redundancy. In this paper, we propose a novel Multi-scale Field
Lightweight High-resolution Network (MFite-HRNet) for human pose estimation. Specifically, our model mainly consists
of two lightweight blocks, a Multi-scale Receptive Field Block (MRB) and a Large Receptive Field Block (LRB), to learn
informative multi-scale and long-range spatial context information. The MRB utilizes group depthwise dilation convolutions
with varied dilation rates to extract multi-scale spatial relationships from different feature maps. The LRB leverages large
depthwise convolution kernels to model large-range spatial knowledge at the low-level features. We apply MFite-HRNet to
single-person andmulti-person pose estimation tasks. Experiments onCOCO,MPII, andCrowdPose datasets demonstrate that
our network outperforms current state-of-the-art lightweight networks in either single-person or multi-person pose estimation
tasks. The source code will be publicly available at https://github.com/lskdje/MFite-HRNet.git.
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1 Introduction

Existing high-resolution networks with large model capac-
ities have achieved outstanding performance in 2D Human
Pose Estimation (HPE) [1–3] thanks to the maintenance of
high-resolution feature maps and multi-scale feature infor-
mation fusion. However, highmodel complexitymakes those
networks computationally prohibitive, hindering training and
challenging inference. This work aims to create a fantastic
lightweight network for HPE with relatively adequate per-
formance.

Early endeavors to facilitateHPEmainly focus on employ-
ing multi-scale or high-resolution features. The hourglass
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network [1] leverages the stacked hourglass modules with
residual blocks to advance pose estimation. The Cascaded
Pyramid Network (CPN) [2] utilizes the GlobalNet to
incorporate multi-scale feature learning to estimate simple
keypoints and the RefineNet to combine all pyramid fea-
tures to predict hard keypoints. The high-resolution network
(HRNet) [3] argues the benefit of keeping high-resolution
branches and integrating different resolution features at dif-
ferent levels, effectively enhancing information extraction
abilities. However, the above methods retain considerable
parameters and computation complexities, demanding high
prerequisites for hardware devices and affecting training and
inference speeds.

To speedupmodel training and reasoning, some researchers
have begun to shift their attention to lightweight net-
work design. Compressing DNN models into compact ones
suitable for edge devices, while maintaining comparable
performance to the original, is the essence of lightweight net-
works [4]. The MobileNet [5] is one of the pioneering work
proposed for embedded devices. The core idea is to decom-
pose convolution, i.e., depthwise convolution and pointwise
convolution,which can effectively lessen the network param-
eters. ShuffleNet [6] is another milestone of lightweight
networks. It founds that 1×1 convolution is a substantial
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Fig. 1 Comparisons with state-of-the-art lightweight pose estimators
regarding model parameters, performance, and receptive fields. The
green circles represent receptive fields’ the larger radius of a circle, the
larger its receptive field

computational bottleneck inMobileNet [5] and othermodels.
Therefore, pointwise convolution with grouping and channel
shuffle is presented to reduce model complexity and improve
expressiveness. Although ShuffleNet and MobileNet have
been applied in HPE, their performance is unappealing with
relatively larger model parameters and computations com-
pared to the latest lightweight models designed for HPE.

In light of these limitations, lightweight models based
on the promising HRNet [3] become prevailing. The Small
HRNet1 is formulated by simply reducing the depths and
widths of HRNet [3], but the performance is unsatisfac-
tory. Lite-HRNet [7] incorporates the Shuffle-ResBlock [6,
8] into a high-resolution network, replacing 1×1 convolution
with a conditional channel weighting block to decrease mas-
sive computations. However, the slighter network width and
depth severely restrain the whole receptive field. Inspired
by Lite-HRNet [7], Dite-HRNet [9] advances the model’s
capability to extract long-range spatial information with
larger convolution kernels. Multi-kernel size Dynamic Split
Convolution (DSC) is leveraged to dynamically capture
multi-scale context information and optimize the trade-off
between capacities and performance. Nonetheless, through
numerous empirical experiments,we found amore promising
manner to allocate appropriate convolution kernels for dif-
ferent model depths. As illustrated in Fig. 1, the lightweight
networks, i.e., MobileNet, Lite-HRNet, Dite-HRNet, and
MFite-HRNet, possess fewer model parameters and smaller
receptive fields thanHRNet. Further, ourMFite-HRNet, with
smaller parameters and larger receptive fields, achieves the

1 Small HRNet is available at https://github.com/HRNet/HRNet-
Semantic-Segmentation. It simply reduces the depths and widths of
the original HRNet.

best performance compared with other lightweight mod-
els. Therefore, expanding the overall perceptive field and
customizing different receptive fields are expected to wells
balance model’s capabilities and complexity.

In this paper, we propose a novel Multi-scale Field
Lightweight High-resolution Network (MFite-HRNet) for
human pose estimation. Specifically, our model mainly con-
sists of two lightweight blocks, i.e., the Multi-Scale Recep-
tive Field Block (MRB) and the Large-Scale Receptive Field
Block (LRB), to enrich feature expressiveness. The MRB
utilizes Group Depthwise Dilation Convolutions (GDDC)
with the same kernel and varied dilation rates to model
multi-scale spatial relationships. Since GDDC can lever-
age the same parameters to attain larger perceptive fields,
MRB enables learning informative human pose patterns and
benefits from a better balance between performance and
complexity. The LRB manipulates the features of all input
channels and models the longer-range spatial dependencies
with a 7 × 7 depthwise convolution kernel. Through MRB
and LRB, our network achieves state-of-the-art performance,
including single-person pose estimation on COCO [10] and
MPII [11] datasets, as well as multi-person pose estimation
onCOCOandCrowdPose [12] datasets, comparedwith other
lightweightmodelswhen the size ofmodel parameters is con-
sistent.

We summarize the main contributions as follows:

• We propose a novel lightweight model, i.e., MFite-
HRNet, for human pose estimation. The network is
formulated based on the HRNet, mainly consisting of
the MRB and LRB blocks to expand receptive fields and
reduce model parameters.

• The MRB concentrates on learning multi-scale context
feature via group depthwise dilation convolutions with
different dilation rates. The LRB is designed to model
long-range spatial feature with large depthwise convolu-
tion kernel. The two lightweight blocks are leveraged as
the foundational components of MFite-HRNet.

• Through adequate balancing between model perfor-
mance andparameters, experiments onCOCO,MPII, and
CrowdPose datasets demonstrate that our MFite-HRNet
outperforms state-of-the-art lightweight humanpose esti-
mation models.

2 Related work

Human pose estimation The HPE task aims to estimate the
spatial positions of keypoints for each person in a scene
and construct a hinged skeleton representation. Since human
numbers in an image are unspecified, existing methods
for HPE are approximately classified into single-person-
based [3, 13–15] and multi-person- based [2, 16–20] mod-
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els. Multi-person pose estimation approaches can be further
categorized into top-down [1, 2, 16, 21] and bottom-up [17–
20, 22, 23] patterns. The core concepts behind single-person
and top-down multi-person pose estimation are essentially
the same. That is, persons in natural scenes are first located;
then, single-person pose estimation models can be used to
predict each person’s keypoint positions. On the contrary,
bottom-up multi-person methods directly estimate all key-
point heatmaps for all persons simultaneously, following
grouping strategies, e.g., associative embedding [24] and
part affinity fields [22], leveraged to articulate the same per-
son’s keypoints to form a complete skeleton. In this work, we
conduct experiments for both single-person and bottom-up
multi-person pose estimation tasks with the proposedMFite-
HRNet.

Lightweight single-person pose estimation Existing
lightweight models for single-person pose estimation are
mainly formulated based on two types of backbones. The first
one is usually established on prevalent lightweight classifi-
cationmodels such as ShuffleNet series [6, 8] andMobileNet
and its variants [5, 25, 26], replacing the last fully connec-
tion (FC) layer with several upsampling layers and adding
shortcut connections for the same scale features. The second
type is mainly built based on the HRNet [3] by decreasing
its depths and widths. For example, Lite-HRNet [7] com-
bines HRNet with ShuffleNet and provides the approach of
cross-resolutionweight calculation. Dite-HRNet [9] presents
the Dynamic Split Convolution(DSC) and Dynamic Kernel
Aggregation(DKA) modules, which are built on the Shuf-
fleNet and use multi-larger convolution kernels to extract
long-range spatial correlations. In addition, DeepLab [27]
utilizes dilation convolution with different dilation rates to
improve the module’s ability to extract multi-scale informa-
tion. Different from the above lightweight pose estimation
works and inspired by DeepLab, we design the lightweight
MRB to leverage multi-scale depth-wise dilation convolu-
tions, which can effectively facilitate feature extractionwhile
maintaining an equivalent amount of parameters.

Lightweight multi-person pose estimation In general,
bottom-up multi-person pose estimation networks perform
much faster than top-down ones. Therefore, lightweight
multi-person pose estimation endeavors are mainly devel-
oped using a bottom-up strategy. The relative lightweight
modelsHigherHRNet-W24 andHigherHRNet-W16 are con-
structed by directly reducing the model depth and width
of HigherHRNet [17], which comprises an HRNet [3] as
the backbone and formulates the upsampled high-resolution
output. EfficientHRNet [28] has seen attractive progress
for multi-person pose prediction, which employs the Effi-
cientNet with a high-resolution structure as the backbone.
LitePose [29] utilizes the MobileNet as the backbone and
leverages a UNet structure to deconvolute and upsample
the high-level feature maps with enhanced results. However,

none of the abovemethods attempt to improve themulti-scale
feature extraction capability in the basic block to optimize
the model performance. Therefore, we formulate the MRB
block to leverage group depthwise dilation convolution with
different dilation rates for multi-scale feature learning.

3 Methodology

3.1 Overview of MFite-HRNet

The proposed MFite-HRNet is a high-resolution lightweight
pose estimator established based on HRNet [3]. The over-
all framework is illustrated in Fig. 2, which mainly consists
of four stages (different columns) and four branches (differ-
ent rows). To balancemodel performance and complexity,we
design two novel lightweight blocks, i.e.,LRBandMRB, and
incorporate them into the network. Precisely, LRB is embed-
ded into stage 1 to extract large-range spatial information at
low-level feature maps. MRB is utilized for stages 2, 3, and
4 to learn multi-scale context informative knowledge.

As shown in Fig. 2, given an input image I ∈ H ×W × 3,
we first utilize a 3 × 3 Convolution (Conv) with stride 2
to downsample and transform it into a C-dimension feature
space. Then, LRB is leveraged to extract large-scale spatial
features with the feature maps adapted to H/4 × W/4 × C .
The output of LRB is fed into stage 2 branch 1. Mean-
while, it is downsampled by a 3× 3 DepthWise Convolution
(DWConv) with stride 2 and expanded by 1x1 convolu-
tion to increase nonlinearity. The downsampled feature maps
become H/8 × W/8 × 2C and serve as the input of stage
2 branch 2. In stages 2, 3, 4, we leverage MRB as the fun-
damental block. Within each stage, a module is formulated
by sequentially stacking the same MRB−G(G ∈ 1, 2, 3, 4)
twice and then fusing feature maps from different branches
through fusion block. The fusion block in ourmodel is similar
to HRNet [3], replacing regular convolution with Depth-
wise Separable Convolution (DSConv). ×Mi , i ∈ 2, 3, 4 in
Fig. 2 refers to the number of module repetitions for the
corresponding stage and is dependent on the configuration
of MFxk-HRNet-18 and MFxk-HRNet-30 in Table 1. After
stage 4, the feature maps of four branches are upsampled to
the resolution of branch 1 and then merged. We employ a
3 × 3 convolution to predict 2D poses. In the following, we
elaborate on the design details of LRB and MRB blocks.

3.2 Multi receptive field block

Our MFite-HRNet is inspired by the HRNet [3]. Although
HRNet demonstrates excellent performance in HPE tasks,
the two stacked 3×3 convolutions of the basic block (shown
in Fig. 3a) utilized in stages 2, 3, and 4 can be further
optimized with fewer parameters. Therefore, Small HRNet
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Fig. 2 Framework of the proposed MFite-HRNet. It is established
based on the HRNet, LRB, and MRB which constitutes the basic
blocks. The LRB aims to model long-range spatial information, and the

MRB focuses on multi-scale spatial knowledge learning for different-
resolution feature maps. ×Mi , i ∈ 2, 3, 4 refers to the number of
repetitions of modules in different stages

Table 1 Structure of MFite-HRNet. Stage 1 has a convolution layer
and a LRB Block. There exists a sequence of modules between stage 2
and stage 4, with each module consisting of a group ofMRB blocks and

a fusion block. k in MFxk-HRNet-N is the base kernel size in MRB, N
denotes the number of layers, and ×Mi signifies the module repetition
numbers (referred to ×Mi in Fig. 2.)

Stages Operator Feature resolutions Output channels Modules (×Mi )

MFxk-HRNet-18 MFxk-HRNet-30

Image 256 × 192 3

Stage 1 Conv 128 × 96 32 1

LRB 64 × 48 32

Stage 2 MRB-1, MRB-2 64 × 48, 32 × 24 48, 96 2 3

Fusion Block

Stage 3 MRB-1, MRB-2, MRB-3 64 × 48, 32 × 24, 16 × 12 48, 96, 144 4 8

Fusion Block

Stage 4 MRB-1, MRB-2, MRB-3, MRB-4 64 × 48, 32 × 24, 16 × 12, 8 × 6 48, 96, 144, 192 2 3

Fusion Block

Channel Split

1 1 Conv

3 3 DWConv

1 1 Conv

Concatenation

(b) Shuffle-ResBlock

Shuffle

3 3 Conv

3 3 Conv

+

(a) Basic Block (c) MRB

Channel Split
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GDDC
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Concatenation
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k k r=1
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k k r=G

DWDConv
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1

(d) GDDC

k=3,r=
2

k=3,r=
3
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4

Fig. 3 Comparisons of different basic blocks designed for our MFite-HRNet in stage 2, 3, and 4. a Basic block proposed in ResNet [30]. b
Shuffle-Resblock proposed in ShuffleNet [6]. c Our MRB block. d GDDC Visualization. k and r denote the kernel size and dilation rate
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endeavors to reduce the networkdepths and channelwidths of
HRNet while keeping the basic block to achieve lightweight.
However, the model performance deteriorates seriously after
pruning. The results reflect that the basic block in HRNet
may not satisfy lightweight requirements. Meanwhile, the
Shuffle-ResBlock (shown in Fig. 3b) has been validated to be
a convincing design for lightweight models in various vision
tasks. It starts by splitting the input features into two segments
with equal channels and then leveraging DWConv to process
only one segment. Shuffle-ResBlock significantly decreases
model parameters and lessens computational efforts. Never-
theless, the receptive field of Shuffle-ResBlock is somewhat
restricted, confining model learning ability.

We follow the insights of the Shuffle-ResBlock and
present the GroupDepthWise Dilation Convolution (GDDC)
to replace the DWConv. GDDC is the core component of our
lightweight MRB and is formulated by multiple DepthWise
Dilation Convolutions (DWDConv) with different dilation
rates (shown in Fig. 3c). GDDCfirstly equally splits the input
into G groups along feature channels. Then, DWDConv is
leveraged to process each group with the dilation rate as the
group index and output channels are the same as the input. At
last, we concatenate the convolution results of the G groups
as the output of GDDC.

It is well known that enlarging convolution kernels can
benefit long-range feature learning and facilitate model
performance. However, directly increasing the kernel size
inevitably raisesmodel parameters. Consequently, we design
the GDDC component utilizing the same convolution ker-
nel and different dilation rates for informative spatial feature
learning, and the DWDConv used by GDDC maintains the
same parameters compared with DWConv. The number ofG
in GDDC depends on where MRB is located on the branch
(as shown in Fig. 2). The base kernel size can be flexibly con-
figured according to needs. Thus, with the GDDC, MRB can
effectively fuse multi-scale spatial context details and obtain
a more extensive range of information than a 3×3 DWConv
in the Shuffle-ResBlock. For the proposed framework, we
design MFx3-HRNet and MFx5-HRNet based on the base
kernel size of 3 and 5 to implement experiments. The details
of MFx3-HRNet and MFx5-HRNet are listed in Table 1.

3.3 Large receptive field block

In HRNet, the input image is first quadruple downsampling
with two sequential convolutions (kernel size k = 3, stride
s = 2) before feeding into stage 1 (shown in Fig. 4a), in
which four bottlenecks are stacked. However, the 3× 3 con-
volution in the four bottlenecksmaintains certain parameters.
Therefore,we refer to the insight of the Shuffle-ResBlock and
equally divide the input into two segments. Feature transfor-
mation is only implemented on one segment, and we replace
the 3×3 convolution in the bottleneck with a 3×3 DWConv

1  1 Conv

3  3 Conv

+

(a) Bottleneck

1  1 Conv×

×

×

Channel Split

7  7 DWConv

1  1 Conv

Shuffle

(b) LRB

Concatenation

1  1 Conv×

×

×

7  7 DWConv

1  1 Conv

×

×

Fig. 4 Comparisons of different basic blocks designed for our MFite-
HRNet in stage 1. a Bottleneck proposed in ResNet [30]. b Our LRB
block

to further reduce model parameters. As a result, it is found
that such a modification leads to performance degradation.

To address the above issue and inspired by the fact that
larger feature resolution and convolution kernels can effec-
tively improve model representation, we first only twofold
downsample an input image using a 3×3 convolution with a
stride of 2. Then, the downsampled features are split into
two parts with the same channels. Since averaging pool-
ing tends to cause spatial information loss, we leverage a
7×7 DWConv with the stride of 2 for double downsampling
in both parts to obtain the quadruple downsampling feature
maps. To this end, we come up with our LRB block.

As illustrated in Fig. 4b, we divide the input channels
into two segments to reduce the overall parameters. Then, a
nonlinear transformation is performed on one segment using
1 × 1 convolution, 7 × 7 DWConv with stride 2, and 1 × 1
convolution for feature extraction. The other segment does
not directly downsample as the Shuffle-ResBlock. Instead,
it is processed by 7 × 7 DWConv with stride 2 and 1 × 1
convolution to enrich feature diversity. For each convolution
operation, it is followed by batch normalization and ReLU.
Finally, concatenation and channel shuffle are leveraged to
fuse features.

4 Experiments

4.1 Settings

Datasets We investigate the performance of MFite-HRNet
on three public widely used human pose estimation datasets,
i.e.,COCO [10], MPII [11] and CrowdPose [12]. The COCO
dataset [10] contains over 200K images and 250K person
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instancesmarkedwith 17 keypoints. The training set includes
57K images and 150K person instances, while the validation
and testing set compromises 5K images and 20K images. We
train our model on the COCO train 2017 dataset, evaluate
the network on the val2017 set, and test dev 2017 simulta-
neously. The MPII benchmark [11] possesses approximately
25K images with full-body pose annotations from real-world
activities. There are over 40K individual instances, divided
into 12K for testing and others for training. The CrowdPose
dataset [12] is made up of 20K images with approximately
80K pedestrians labeled with 14 keypoints. This dataset
encompasses more crowded scenes than the COCO dataset,
posing more challenges to pose estimation methods.

EvaluationmetricsHumanpose estimation aims to predict
body keypoints as close to ground truth as possible. To evalu-
ate the predictions, we utilize the Object Keypoint Similarity
(OKS), which calculates the matching degree between the
predicted and ground truth values and is normalized by the
human scale. The range ofOKSvaries from0 to 1,with larger
values indicating more accurate predictions. Based on OKS,
the average precision (AP) is obtained as the average preci-
sion over ten positions at OKS values of 0.50, 0.55,..., 0.90,
and 0.95. We also leverage the AP50 (AP at OKS = 0.5),
AP75, APM , and APL and average recall (AR) scores as the
criteria. The above metrics are evaluated for the COCO and
CrowdPose datasets. For the MPII dataset, we resort to the
head-normalized Probability of Correct Keypoints (PCKh)
at 50, i.e., PCK@50 to assess the performance. Meanwhile,
model parameters (Params (M)) and computation capacity
(GFLOPs) are reported to evaluate model complexity.

Parameter settingsWefollow thedefault training and eval-
uation settings of MMPose [31], with an optimizer of Adam
and the learning rate of 2e−3. We conduct experiments on
8 GeForce RTX 3090 GPUs for the single-person pose esti-
mation task with each GPU processing 50 images. Following
conventional procedures, image resolutions of 256×192 and
384 × 288 are leveraged to evaluate model performance. In
contrast, for the multi-person trials, we implement experi-
ments on 8 NVIDIA TESLA T4 and set the batch size as
40. To make a fair comparison with LitePose [29], we apply
image resolutions of 256×256 and488×488.Wealso present
the results of Lite-HRNet [7] and Dite-HRNet [9] on the
COCO dataset [10] with default parameters on multi-person
task.We optimize thosemodels using the default parameters.

Implementation details When estimating single-person
pose for the COCO dataset [10], following the protocols of
Lite-HRNet [7] and Dite-HRNet [9], we utilize the ground
truth bounding boxes containing persons for training. While
in the testing phase,we leverage a two-stage top-downperson
detector [14] to detect human instances first. For MPII [11],
we obey the standard strategy to use the provided person
boxes for experiments. We use post-Gaussian filters to esti-
mate heatmaps and average the expected heatmaps of the

original and flipped images. A quarter offset is applied
from the highest answer to the second-highest response to
establish each keypoint position. In multi-person pose esti-
mation, predictions aremade directly on a whole input image
without human detection in advance. We modify our MFite-
HRNet based on HigherHRNet [17] for the multi-person
prediction and make comparisons with Lite-HRNet [7] and
Dite-HRNet [9] at 256 × 256 and 488 × 488 resolutions.

4.2 Ablation study

To describe the insights in designing lightweight MRB and
validate the effectiveness of MRB and LRB for MFite-
HRNet, we perform ablation study on theCOCOdataset with
image at the resolution of 256 × 192. Experimental results
on the validation set are reported in Table 2. Baseline-1 is
constructed based on the small HRNet by replacing its basic
block in stages 2, 3, and 4 with the Shuffle-ResBlock [6].
Furthermore, we regard the Lite-HRNet-18 [7] as our new
baseline model, i.e., Baseline-2.

Designing insights ofMRB In the proposedMFite-HRNet,
MRB is the fundamental block. It is formulated based on
multi-scale DWDConv with the same convolution kernel (k
= 3) and group dilation rates (r = 1, 2, 3, 4). The maxi-
mumequivalent convolution kernel sizes ofMRB in different
stages and branches range in 3, 5, 7, and 9. In contrast,
we implement experiments using single-scale DWDConv to
obtain equivalent convolution kernel sizes. To this end, we
design two comparison experiments with the same model
parameters as MFite-HRNet leveraging DWDConv. We pro-
gressively increase the dilation rate r from 2 to 4 in stages 2,
3, and 4 for Exp-1, while increasing r from 1 to 4 in branches
1, 2, 3, 4 for Exp-2. Though Exp-1 and Exp-2 have the
maximum equivalent convolution kernel sizes as MRB, the
single-scale dilation operation leads to spatial information
loss. Therefore, the MRB we designed uses group depth-
wise dilation convolutions with varied scales to improve the
model’s long-distance and multi-scale spatial information
extraction ability.

Effectiveness of MRB MRB is leveraged to learn multi-
scale spatial context information at different level features
with lightweight parameters. To verify its superiority, we
conduct experiments by replacing the DWConv (k=3) block
of Baseline-1 in stage 2, 3, and 4 with our MRB. From
Exp-4 in Table 2, we can safely conclude that with the
proposed MRB, the AP metric has been improved by 1.4
compared to Baseline-1. Furthermore, for the Baseline-2,
when we directly substitute the basic block of Lite-HRNet-
18 with our MRB, the AP and AR of Exp-6 can achieve
1.0 and 0.9 enhancements. We also observe that Baseline-
1 outperforms Baseline-2 slightly. The reasons are that
Baseline-2 replaces the 1x1 convolution of Shuffle-ResBlock
in Baseline-1 with conditional channel weighting, which
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Table 2 Ablation studies on the COCO val2017 set

Experiments Model Params (M) GFLOPs AP AR

Baseline-1 DWConv (k = 3) Stages 2/3/4 1.1 0.4 65.5 71.7

Exp-1 DWDConv (k = 3) Stage 2 (r = 2) Stage 3 (r = 3) Stage 4 (r = 4) 1.1 0.4 63.6 70.1

Exp-2 DWDConv (k = 3) Branch 1 (r = 1) Branch 2 (r = 2) Branch 3 (r = 3) Branch 4 (r = 4) 1.1 0.4 63.2 69.9

Exp-3 LRB Stage 1/2/3/4 1.23 0.5 67.7 73.7

Exp-4 w MRB, w/o LRB 1.06 0.37 66.9 73.0

Exp-5 MFite-HRNet (w MRB, w LRB) 1.06 0.37 67.1 73.1

Baseline-2 Lite-HRNet-18 [7] 1.1 0.2 64.8 71.2

Exp-6 Lite-HRNet-18 + MRB 1.1 0.2 65.8 72.1

The GFLOPs are computed with the input size 256 × 192. k = kernel size. r = dilation rate. MRB is formulated based on DWDConv with k = 3
and varied r at different stages and branches

reduces feature dimensions and then lifts them. Such a mod-
ification relieves computational effort but sacrifices some
information. Nevertheless, the performance improvements
in Exp-6 over Baseline-2 verify the advantages of our MRB
block.We attribute the gains forMRB effectively reinforcing
the model’s ability to extract multi-scale long-range context
knowledge, so as to benefit human pose estimation.

Effectiveness of LRBLRB is designed for extracting large-
range spatial information. To verify its effectiveness, we
replace all DWConv of stage 2/3/4 in Baseline-1 with LRBs
and name it Exp-3. It can be seen from Table 2 that 2.2 AP
and 0.2 AR gains have been obtained for Exp-3 relative to the
Baseline-1 experiment. Comparing Exp-3 and Exp-5, we can
further observe that the model constructed with total LRB
blocks also performs better than the MFite-HRNet. Mean-
while, the larger convolution kernel of LRB increases the
model parameters in contrast with the Exp-5 model. There-
fore, we use MRB in stages 2/3/4 and LRB in stage 1 to
achieve the best model parameters and performance balance.

4.3 Comparisons with state-of-the-arts for SPE

We conduct single-person pose estimation (SPE) on the
COCO val2017, COCO test-dev2017 and MPII val sets and
make comparisons with state-of-the-arts (SOTA).

COCOVal2017 set The comparisons with current cutting-
edge methods on the COCO val2017 set are presented in
Table 3. Our trained-from-scratch MFite-HRNet with differ-
ent backbones and input sizes attain impressive performance
gain with much less complexity, compared with methods
based prevalent lightweight models, i.e., MobileNetV2 [25]
and ShuffleNetV2 [8]. Meanwhile, with nearly the same
parameters, the proposedMFx5-HRNet-18 andMFx5-HRNet-
30 yield 3.1 and 2.8 AP profits compared to Lite-HRNet-18
and Lite-HRNet-30, as well as 2.0 and 1.7 AP gains in con-
trast with Dite-HRNet-18 and Dite-HRNet-30 [9]. As for the
Small HRNet, our progress achieves more than 12.7 for the
APmetric. Compared to large networks such asHourglass[1]

and CPN [2], our network gets equivalent AP scores while
negligibly modeling complexity. We further display some
pose estimation results of MFx3-HRNet-30 in Fig. 5. It can
be observed that our model performs well for large view-
point changes, partial keypoint occlusions and multi-person
scenes. Quantitative and qualitative results demonstrate the
superiority of our MFite-HRNet.

COCO Test-dev2017 set Table 4 reports the compari-
son results of our model and state-of-the-art methods on
the COCO test-dev2017 set. Our MFx5-HRNet-30 with the
image resolution of 256×192 achieves a 71.2 AP score,
which is significantly better than the large networks 8-stage
Hourglass [1] and CPN [2] with fewer GFLOPs and param-
eters. Compared to Dite-HRNet-18 [9], MFx5-HRNet-18
improves AP by 1.0 points and AR by 0.9 points with the
equivalentmodel complexity. Although bothDite-HRNet [9]
and MFite-HRNet have improved Shuffle-ResBlock to learn
long-range features,MFite-HRNet’sGDDCleveragesDWD-
Convwith smaller feature channels in low-resolutionbranches,
but more channels in high-resolution branches than Dite-
HRNet’s DWConv. Hence, MFite-HRNet achieves better
performance with similar parameters compared to Dite-
HRNet. In spite of having some performance gaps compared
with some large networks [3, 32], our networks have consid-
erably lower GFLOPs and model parameters. Those results
demonstrate the superiority of our model for single-person
pose estimation on the COCO test-dev2017 set.

MPII Val set Table 5 shows the results for our net-
work and the most advancing lightweight networks on MPII
val set. Our MFx5-HRNet-18 attains 87.5 PCKh@0.5, a
higher accuracy with fewer parameters and it outperforms
MobileNetV2 [25], MobileNetV3[26], ShuffleNetV2 [8],
Small HRNet, Lite-HRNet [7], and Dite-HRNet [9] by 2.1,
3.2, 4.7, 7.3, 1.4, and 0.5 points, respectively. The improve-
ment gaps for MFx5-HRNet-30 become larger in contrast
with other networks as the model size grows. The perfor-
mance gains with lightweight model complexity validate the
effectiveness of our MFite-HRNet on MPII val set.
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Table 3 Comparisons with SOTA lightweight models on the COCO val2017 set for SPE

Method Backbone Pretrain Input size #Params (M) GFLOPs AP AP50 AP75 APM APL AR

Large networks

8-stage Hourglass [1] Hourglass N 256 × 192 25.1 14.3 66.9 – – – – –

CPN [2] ResNet-50 Y 256 × 192 27.0 6.2 68.6 – – – – –

Simple Baseline [14] ResNet-50 Y 256 × 192 34.0 8.9 70.4 88.6 78.3 67.1 77.2 76.3

HRNet [3] HRNet-W32 N 256 × 192 28.5 7.1 73.4 89.5 80.7 70.2 80.1 78.9

UDP [32] HRNet-W32 Y 256 × 192 28.7 7.1 75.2 92.4 82.9 72.0 80.8 80.4

Small networks

MobileNetV2 [25] MobileNetV2 N 256 × 192 9.6 1.4 64.6 87.4 72.3 61.1 71.2 70.7

ShuffleNetV2 [8] ShuffleNetV2 N 256 × 192 7.6 1.2 59.9 85.4 66.3 56.6 66.2 66.4

Small HRNet HRNet-W18 N 256 × 192 1.3 0.5 55.2 83.7 62.4 52.3 61.0 62.1

Lite-HRNet [7] Lite-HRNet-18 N 256 × 192 1.1 0.2 64.8 86.7 73.0 62.1 70.5 71.2

Lite-HRNet-30 N 256 × 192 1.8 0.3 67.2 88.0 75.0 64.3 73.1 73.3

Dite-HRNet [9] Dite-HRNet-18 N 256 × 192 1.1 0.2 65.9 87.3 74.0 63.2 71.6 72.1

Dite-HRNet-30 N 256 × 192 1.8 0.3 68.3 88.2 76.2 65.5 74.1 74.2

MFite-HRNet MFx3-HRNet-18 N 256 × 192 1.06 0.37 67.1 87.4 74.8 64.2 72.8 73.1

MFx3-HRNet-30 N 256 × 192 1.72 0.6 69.2 88.2 76.8 66.4 75.3 75.2

MFite-HRNet MF-5-HRNet-18 N 256 × 192 1.1 0.4 67.9 87.6 75.6 64.9 73.7 73.7

MFx5-HRNet-30 N 256 × 192 1.79 0.65 70.0 88.5 77.8 66.9 75.8 76.1

MobileNetV2 [25] MobileNetV2 N 384 × 288 9.6 3.3 67.3 87.9 74.3 62.8 74.7 72.9

ShuffleNetV2 [8] ShuffleNetV2 N 384 × 288 7.6 2.8 63.6 86.5 70.5 59.5 70.7 69.7

Small HRNet HRNet-W18 N 384 × 288 1.3 1.2 56.0 83.8 63.0 52.4 62.6 62.6

Lite-HRNet [7] Lite-HRNet-18 N 384 × 288 1.1 0.4 67.6 87.8 75.0 64.5 73.7 73.7

Lite-HRNet-30 N 384 × 288 1.8 0.7 70.4 88.7 77.7 67.5 76.3 76.2

Dite-HRNet [9] Dite-HRNet-18 N 384 × 288 1.1 0.4 69.0 88.0 76.0 65.5 75.5 75.0

Dite-HRNet-30 N 384 × 288 1.8 0.7 71.5 88.9 78.2 68.2 77.7 77.2

MFite-HRNet MFx3-HRNet-18 N 384 × 288 1.06 0.83 69.2 88.1 76.4 65.7 75.6 74.8

MFx3-HRNet-30 N 384 × 288 1.72 1.31 70.8 88.6 77.9 67.3 77.3 76.3

MFite-HRNet MFx5-HRNet-18 N 384 × 288 1.1 0.89 70.4 88.3 77.5 66.8 76.7 76.2

MFx5-HRNet-30 N 384 × 288 1.79 1.43 72.1 88.9 78.4 68.7 78.2 77.7

Pretrain = pretrain the backbone on the ImageNet classification task. Bold indicates the best results

Fig. 5 Visualization of pose
estimation results on COCO
val2017 using MFx3-HRNet-18
model

4.4 Comparisons with state-of-the-arts for MPE

For the multi-person pose estimation (MPE), we implement
experiments on the COCO val2017 set and CrowndPose test
set. Tables 6 and 7 report contrast with the most advancing
lightweight methods. To make fair comparisons, we train
and test Lite-HRNet [7] and Dite-HRNet [9] using the same
configurations as our MFite-HRNet.

COCO Val2017 set The results for MPE in COCO
val2017 are presented in Table 6. Our approach achieves
superior results at a resolution of 256 × 256, surpassing

Lite-HRNet [7] by 4.4 and Dite-HRNet [9] by 7 regarding
AP metric. When making contrast with Litepose [29], our
model produces 1.1 AP profit. Notably, our model exhibits
a remarkable performance improvement of 6.2 compared to
EfficientHRNet [28]. Those results validate the advantages
of MFite-HRNet for MPE task.

CrowdPose test set We evaluate our approach on the
CrowdPose dataset with images at resolutions of 256 × 256
and 448 × 448 and report the results in Table 7. It can
be observed that our approach outperforms Lite-HRNet [7]
and Dite-HRNet [9] with large margins. Since our model
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Table 4 Comparisons with SOTA models on the COCO test-dev2017 set for SPE

Method Backbone Pretrain Input size #Params (M) GFLOPs AP AP50 AP75 APM APL AR

Large networks

8-stage Hourglass [1] Hourglass N 256 × 192 25.1 14.3 66.9 – – – – –

CPN [2] ResNet-50 Y 256 × 192 27.0 6.2 68.6 – – – – –

Simple Baseline [14] ResNet-50 Y 256 × 192 34.0 8.9 70.0 90.9 77.9 66.8 75.8 75.6

HRNet [3] HRNet-W32 N 256 × 192 28.5 7.1 73.4 89.5 80.7 70.2 80.1 78.9

UDP [32] HRNet-W32 Y 256 × 192 28.7 7.1 75.2 92.4 82.9 72.0 80.8 80.4

Small networks

MobileNetV2 [25] MobileNetV2 N 256 × 192 9.6 1.4 64.6 87.4 72.3 61.1 71.2 70.7

ShuffleNetV2 [8] ShuffleNetV2 N 256 × 192 7.6 1.2 59.9 85.4 66.3 56.6 66.2 66.4

Small HRNet HRNet-W18 N 256 × 192 1.3 0.5 55.2 83.7 62.4 52.3 61.0 62.1

Lite-HRNet [7] Lite-HRNet-18 N 256 × 192 1.1 0.2 63.7 88.6 71.1 61.1 68.6 69.7

Lite-HRNet-30 N 256 × 192 1.8 0.3 66.7 89.9 74.9 63.9 71.9 72.7

Dite-HRNet [9] Dite-HRNet-18 N 256 × 192 1.1 0.2 – – – – – –

Dite-HRNet-30 N 256 × 192 1.8 0.3 – – – – – –

MFite-HRNet MFx3-HRNet-18 N 256 × 192 1.06 0.37 66.4 89.5 74.4 63.8 71.4 72.3

MFx3-HRNet-30 N 256 × 192 1.72 0.6 68.5 90.2 76.7 65.9 73.5 74.3

MFite-HRNet MFx5-HRNet-18 N 256 × 192 1.1 0.4 67.4 89.7 75.5 64.5 72.6 73.1

MFx5-HRNet-30 N 256 × 192 1.79 0.65 69.4 90.6 77.6 66.7 74.4 75.1

MobileNetV2 [25] MobileNetV2 N 384 × 288 9.8 3.3 66.8 90.0 74.0 62.6 73.3 72.3

ShuffleNetV2 [8] ShuffleNetV2 N 384 × 288 7.6 2.8 62.9 88.5 69.4 58.9 69.3 68.9

Small HRNet HRNet-W18 N 384 × 288 1.3 1.2 55.2 85.8 61.4 51.7 61.2 61.5

Lite-HRNet [7] Lite-HRNet-18 N 384 × 288 1.1 0.4 66.9 89.4 74.4 64.0 72.2 72.6

Lite-HRNet-30 N 384 × 288 1.8 0.7 69.7 90.7 77.5 66.9 75.0 75.4

Dite-HRNet [9] Dite-HRNet-18 N 384 × 288 1.1 0.4 68.4 89.9 75.8 65.2 73.8 74.4

Dite-HRNet-30 N 384 × 288 1.8 0.7 70.6 90.8 78.2 67.4 76.1 76.4

MFite-HRNet MFx3-HRNet-18 N 384 × 288 1.06 0.83 68.3 89.8 75.8 65.2 73.8 73.9

MFx3-HRNet-30 N 384 × 288 1.72 1.31 70.1 90.5 77.7 66.9 75.8 75.6

MFite-HRNet MFx5-HRNet-18 N 384 × 288 1.1 0.89 69.4 90.2 76.5 66.2 75.0 75.3

MFx5-HRNet-30 N 384 × 288 1.79 1.43 71.2 90.9 78.5 68.0 76.9 77.0

Pretrain = pretrain the backbone on the ImageNet classification task. Bold indicates the best results

Table 5 Comparisons with SOTA lightweight models on the MPII val
set for SPE

Method #Params (M) GFLOPs PCKh

MobileNetV2 1× [25] 9.6 1.9 85.4

MobileNetV3 1× [26] 8.7 1.8 84.3

ShuffleNetV2 1× [8] 7.6 1.7 82.8

Small HRNet 1.3 0.7 80.2

Lite-HRNet-18 [7] 1.1 0.2 86.1

Lite-HRNet-30 [7] 1.8 0.4 87.0

Dite-HRNet-18 [9] 1.1 0.2 87.0

Dite-HRNet-30 [9] 1.8 0.4 87.6

MFx3-HRNet-18 1.06 0.4 87.3

MFx3-HRNet-30 1.72 0.6 88.0

MFx5-HRNet-18 1.1 0.4 87.5

MFx5-HRNet-30 1.79 0.6 88.4

Bold indicates the best results

does not utilize pre-trained models and elaborately tuning
strategies such as Neural Architecture Search(NAS) [33], the
performance is inferior to those of LitePose. Nonetheless,
our approach performs better than other lightweight models
under the same training configuration.

5 Conclusion

In this paper, we propose the novel lightweight MFite-
HRNet for human pose estimation tasks. To address the
problem of small receptive fields and lack of long-range spa-
tial information modeling in existing lightweight networks,
we formulate two novel lightweight basic blocks, i.e., LRB
and MRB, which are, respectively, responsible for learn-
ing large-range spatial information at low-level feature maps
and multi-scale spatial context at varied feature maps. With
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Table 6 Comparisons with SOTA lightweight models on the COCO val2017 set for MPE

Method Backbone Pretrain Input size #Params (M) GFLOPs AP AP50 AP75 APM APL AR

Large networks

OpenPose [22] – – – – – 61.8 84.9 67.5 57.1 68.2 –

Hourglass [1] Hourglass N 512 × 512 277.8 206.9 56.6 81.8 61.8 49.8 67.0 –

HigherHRNet [17] HRNet-W32 N 512 × 512 28.6 47.9 67.7 87.0 73.8 61.9 76.3 72.3

Small networks

EfficientHRNet [28] EfficientHRNet−4 Y 384 × 384 3.7 2.1 35.5 – – – – –

EfficientHRNet−2 Y 448 × 448 10.3 7.7 52.8 – – – – –

LitePose [29] LitePose-XS Y 256 × 256 1.7 1.2 40.6 – – – – –

Lite-HRNet [7] Lite-HRNet-30 N 256 × 256 1.8 1.95 37.3 65.6 36.5 – – 44.3

Dite-HRNet [9] Dite-HRNet-30 N 256 × 256 1.8 1.95 34.7 63.2 33.3 – – 41.6

MFite-HRNet MFx3-HRNet-30 N 256 × 256 1.8 2.43 39.8 67.4 39.7 – – 46.1

MFite-HRNet MFx5-HRNet-30 N 256 × 256 1.8 2.43 41.7 69.2 42.9 – – 48.0

Pretrain = pretrain the backbone on the ImageNet classification task. Bold indicates the best results

Table 7 Comparisons with SOTA lightweight models on the CrowdPose test set for MPE

Method Backbone Pretrain Input size #Params (M) GFLOPs AP AP50 AP75 AR

Large networks

OpenPose [22] – – – – – 61.8 84.9 67.5 –

Hourglass [1] Hourglass N 512 × 512 277.8 206.9 56.6 81.8 61.8 –

HigherHRNet [17] HRNet-W32 N 512 × 512 28.6 47.9 67.7 87.0 73.8 72.3

Small networks

EfficientHRNet [28] EfficientHRNet−3 Y 416 × 416 5.3 4.3 46.1 79.3 48.3 –

EfficientHRNet−1 Y 480 × 480 13.0 14.2 56.3 81.3 59.0 –

LitePose [29] LitePose-XS Y 256 × 256 1.7 1.2 49.5 74.5 51.4 –

LitePose-S Y 448 × 448 2.7 5.0 58.3 81.1 61.8 –

Lite-HRNet [7] Lite-HRNet-30 N 256 × 256 1.8 2.3 42.1 70.8 41.2 49.6

Lite-HRNet-30 N 448 × 448 1.8 7.2 51.1 78.5 52.3 58.5

Dite-HRNet [9] Dite-HRNet-30 N 256 × 256 1.8 2.3 41.8 70.6 40.7 49.5

Dite-HRNet-30 N 448 × 448 1.8 7.2 51.1 78.6 52.0 58.6

MFite-HRNet MFx3-HRNet-30 N 256 × 256 1.8 2.43 44.8 72.9 44.6 52.2

MFx3-HRNet-30 N 448 × 448 1.8 16.2 55.0 79.9 56.2 62.3

MFite-HRNet MFx5-HRNet-30 N 256 × 256 1.8 2.43 45.7 73.8 47.2 52.1

MFx5-HRNet-30 N 448 × 448 1.8 16.2 56.1 81.1 58.4 62.8

Pretrain = pretrain the backbone on the ImageNet classification task. Bold indicates the best results

the proposed LRB and MRB blocks, our model performs
superior comparedwith state-of-the-art lightweight pose esti-
mationmodels on theCOCO,MPII, andCrowdPose datasets.
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