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ABSTRACT

The rapid 3D objects modeling provides an effective way to enrich
digital content, which is one of the essential tasks in VR/AR research.
Flowers are frequently utilized in real-time applications, such as
video games and VR/AR scenes. Technically, a realistic flower
generation using the existing 3D modeling software is complicated
and time-consuming for designers. Moreover, it is difficult to create
imaginary and surreal flowers, which might be more interesting and
attractive for the artists and game players. In this paper, we propose
a component-based framework for rapid flower modeling, called
Flower Factory. The flowers are assembled by different components,
e.g., petals, stamens, receptacles and leaves. The shape of these
components are created using simple primitives such as points and
splines. After the shape of models are determined, the textures are
synthesized automatically based on a predefine mask, according to
a number of rules from real flowers. The whole modeling process
can be controlled by several parameters, which describe the physical
attributes of the flowers. Our technique is capable of producing
a variety of flowers rapidly. Even novices without any modeling
skills are able to control and model the 3D flowers. Furthermore,
the developed system will be integrated in a lightweight application
of smartphone due to its low computational cost.

Keywords: Procedural modeling, geometric modeling, 3D flower,
component, texture synthesis.

Index Terms: Computing methodologies—Computer graphics—
Shape modeling—Parametric curve and surface models; Comput-
ing methodologies—Computer graphics—Image manipulation—
Texturing

1 INTRODUCTION

The rapid modeling of 3D geometric objects is very important for en-
riching digital content, which is an essential task in VR/AR research
and development. Flowers are frequently utilized in CG applications,
such as video games, film production and VR/AR scenes. On one
hand, due to the complex structure of the flower, it is quite tactical
and time-consuming for designers to generate a realistic flower us-
ing the 3D modeling software. In the traditional modeling pipeline,
designers must depict the shapes and produce the textures for each
component in a flower. It usually takes more than 20 minutes to
model a 3D flower for a skilled designer. On the other hand, it is
quite challenging to create imaginary and surreal flowers through
traditional pipeline, which might be more interesting and attractive
for artists and audience. Meanwhile, with the popularity of smart-
phones and the growing need of mobile entertainment, a lightweight
modeling software for flowers is in great demand. Although there
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are some semi-automatic modeling methods for flowers [10, 33–35],
they require users to provide real photos of the flower or complex
structural information of the flower. Due to the high computation-
al cost and complicated interactions, these methods can hardly be
integrated in lightweight applications, such as XR in smartphones.

In this paper, we propose a component-based approach for rapid
flower modeling that is named as Flower Factory. It is able to
overcome the above limitations and generate realistic 3D flowers at
the mobile platform. In our framework, the flowers are assembled by
different components, e.g., petals, stamens, receptacles and leaves.
The shapes of the components are created using geometric primitives
such as points, splines. After the shapes are determined, the textures
are synthesized automatically based on a predefine mask. The whole
modeling process can be controlled by 84 parameters (Appendix),
which describe the physical attributes of the flowers. Designers
can produce a variety of flowers rapidly using our method. Even
novices without any modeling experience are able to create 3D
flowers. Finally, due to its simple interactions and low computational
cost, our technique can be integrated in lightweight applications for
smartphones.

To sum up, the technical contributions of our approach can be
summarized as follows:

• We propose a comprehensive component-based framework
for rapid flower modeling, which can be controlled by a set of
parameters. The flower components are all generated by simple
geometric primitives, including petals, stamens, receptacles
and leaves. It greatly reduces the computational cost which
ensures the framework can be integrated into mobile platform.
With an intuitive and easy-to-use interface, novices can quickly
create 3D flowers with the style on their own.

• We assemble the components in different ways to create a
complete flower model. The geometric information and the
topological structure of the model are processed separately.
Several straightforward but effective strategies are presented
to handle the collisions of petals in floral components during
assembling process and blooming animation.

• Considering the natural characteristics of the textures of real
petals, we design a number of rules and provide a predefine
mask to adjust the color distribution on the petal surface. The
textures of petals can be controlled and synthesized with dif-
ferent attributes automatically.

The overview of our system is shown in Fig. 1. The input of the
system is the parameters that are provide by the user or system. The
geometry and texture of the components are generated according
to the input, and then the entire flower is assembled using these
components.

The remainder of the paper is organized as follows: After briefly
discussion about the related work in Section 2, we will introduce
the geometry generation of flowers including petals, stamens, re-
ceptacles and leaves in Section 3 and texture synthesis in Section 4.
Section 5 documents the experimental results and comparisons. Fi-
nally, Section 6 concludes the paper and points out the future work.
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Figure 1: System overview.

2 RELATED WORK

In this section, we first investigate the procedural modeling approach-
es for plants. Then we review image-based or video-based modeling
techniques. These techniques have become a hot research topic in
recent years. Finally, we inspect the methods of texture generation
for plants.

Procedural modeling for plants. Procedural modeling is of-
ten employed to generate 3D plants based on specific rules. The
most famous one is the L-system, which was proposed by Lin-
denmayer [13] and introduced to the computer graphics com-
munity by Prusinkiewicz and Lindenmayer [24]. Subsequently,
plenty of modeling techniques based on the L-system were pro-
posed [3, 12, 22, 23, 25]. Boudon et al. [3] utilized the L-system to
model potted plants, and Qin et al. [25] proposed a flower model-
ing method based on the L-system and Bezier curve. Furthermore,
another type of rule-based modeling method was proposed to make
the designing process more convenient [2, 5–9, 17, 18, 20]. Owens
et al. [18] presented a suite of biologically-motivated algorithms
for inflorescence modeling and its animation process. Ijiri et al. [9]
provided a graphical interface to create a flower based on the sketch
of botanical structures.

Image/video-based modeling for plants. With the popularity of
digital cameras and 3D scanning equipments in recent years, a great
number of data-driven methods were proposed for trees or flower-
s [10, 16, 26, 31, 33–35]. In order to faithfully reproduce the plant,
these methods reconstructed the plant model by 3D point clouds or
images. Yan et al. [33] presented a semi-automatic framework for
reconstructing flower model from a single photograph. A revolution
surface is used to model the structure of flowers, and the shapes of
petals are created based on real photos. Zhang et al. [34] obtained the
flower information from 3D point clouds at a single view, and then
it created realistic flower model based on the information. Ijiri et
al. [10] utilized an X-ray computed tomography (CT) system to scan
the real flowers and completed the modeling with user interactions.
Zheng et al. [35] captured the visible parts of a blooming flower into
a point-cloud sequence, then it reconstructed the geometry of the
flower and the deformation over time. Most of the above methods
require users to provide real photos or scanning data and interaction
parameters to reconstruct the flowers. They can hardly produce
imaginary or surreal flowers, and they usually take a long time in
the modeling process. As a consequence, it is difficult to integrate
these techniques into a lightweight application, such as VR/AR in
smartphones.

Texture synthesis for plants. Automatic generation of leaf tex-
tures is investigated by some researchers [1,11,15,21,27,28]. Given
the producing rules and the leaves’ age, Peyrat et al. [21] synthe-
sized the changes of leaf in color and texture. Rodkaew et al. [27]
presented a particle transport system, which generates leaf texture
and color by randomly scattering particles within a given leaf shape.
Alsweis et al. [1] proposed a procedural technique for the simulation

of leaf contour growth and venation development based on biologi-
cal principles. The leaf contour is extracted from the given photo,
and the pigment is diffused in the 2D space according to the leaf
shape. In our paper, an automatic generation method is proposed for
the petal’s texture based on the shape of petal.

3 GEOMETRY GENERATION

The geometric model of flowers can be separated into four compo-
nents: petals, stamens, receptacles and leaves. We first generate
each component respectively, then we combine these components to
assemble a complete flower model. The generation process is fully
controlled by parameters, which describe the physical attributes of
the flowers. We provide a simple but intuitive interface for users to
adjust parameters. After the model generation, users can still edit
the 3D flowers manually according to their needs.

3.1 Floral Components

In our modeling framework, the floral components consist of petals,
leaves, receptacles and stamens. All the components can be con-
trolled by parameters.

(a) (b) (c)

(d) (e)

Figure 2: Generation of 2D model. (a) The green region is the fea-
sible location of the control points (red dots). The control points are
chosen randomly. (b) The blue contour is created by connecting the
control points directly and the red contour is generated by sampling
on the B-spline. (c) The black line is the central vein of the petal. (d)
The subdivision result and the triangulation result of the symmetric
petal. (e) The subdivision result and the triangulation result of the
asymmetric petal.

Petals and leaves are created using two boundary curves on 2D
planes, and the boundary curves are generated by control points. To
keep the natural characteristics, the region for the boundary curves
is defined and the control points must locate in this region. Users are
able to decide the number of the control points. As shown in Fig. 2a,
the length and the width of the model are also provided by the user,
and the feasible location of the control points is adjusted based on
the width. There might exist unnatural sharp and rough shape if the
edge is created by connecting the control points directly (Fig. 2b).
To remove the artifact, we generate smooth boundary curves by
sampling on B-spline which is defined by the control points. As
shown in Fig. 2c, the central vein of the model is connected from
the head to tail of the contour. We also provide a parameter to
control the symmetry of the model (Fig. 2d and Fig. 2e). To obtain a

13

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 02,2021 at 08:05:03 UTC from IEEE Xplore.  Restrictions apply. 



smooth geometry, the model is subdivided using [4] and triangulated
using [30].

Serrate leaves often appear in nature, so we add sawtooth to the
boundaries of leaves. Various patterns are defined for sawtooth. As
demonstrated in Fig. 3, the pattern is defined in a unit region on
2D plane. After the user selects a pattern, our program applies the
pattern to the boundaries of the leaves. Also, the user can define the
number and the size of the sawtooth. The positions of the sawtooth
are determined based on the number that the sawtooth are distributed
evenly on the boundaries. As depicted in Fig. 3, the results controlled
by different parameters are presented.

(a) (b) (c)

Figure 3: The serrate edges of the leaf. (a) A leaf model with 11 small
sawtooth. (b) A leaf model with 11 large sawtooth. (c) A leaf model
with 17 smaller sawtooth.

Since the models are created on 2D plane, we employ linear
blending skinning (LBS) [14] to produce the 3D geometry.

We divide all the points into three sets: P =
{p | p is in the plane model}, V = {p | p is on the central vein},
and S = P−V . Then the rigging weights for points in S are
calculated using Algorithm 1. The weight is defined according to
the Euclidean distance between the points in S and the points in V .
Furthermore, as shown in Fig. 6, a parameter ω is defined to control
the curvature of the model. To change the shape in another way, we
also make the central vein to fit a 3D curve which is demonstrated
in Fig. 4. As a result, the user is capable of editing the 3D shape of
the model.

(a) (b)

Figure 4: The deformation of shape based on the 3D curve.

The flower stem is treated as a receptacle component. It shares
a similar structure with the stamen, which includes an ellipsoid
and a tube. The tube is controlled by a parametric curve which
consists of a diameter and a length for the tube. The ellipsoid is
controlled by three inner diameters in x-y-z directions. Finally, a
random function [19] is utilized to the vertices to add fluctuation,
which can make the geometry more real.

3.2 Components Assembly
A complete flower model can be assembled after each component
is created. As shown in Fig. 1, the leaves are distributed around
the stem. User can specify the number of leaf layers, the interval

Algorithm 1 Calculate Rigging Weights

Input: P, S, V and ω
Output: W – the weights for S
1: W = Φ
2: for each ps ∈ S do
3: Distance(ps)←Φ
4: for each pv ∈V do
5: Distance(ps,pv)← Dist(ps, pv)
6: end for
7: sort Distance(ps) in ascending order;
8: num← 3;
9: sum← SUM(Distance(ps),num)

10: W (ps) = Φ;
11: for i = 0→ num−1 do
12: W (ps, i)← Distance(ps, i)/sum∗ω;
13: end for
14: end for
15:

16: function SUM(Array,number)
17: result ← 0;
18: for i = 0→ number−1 do
19: result ← result +Array[i];
20: end for
21: return result
22: end function

height between two layers, the number of leaves in each layer and
the rotation angle α of the leaves, which are illustrated in the Fig. 5.
The size of the leaves also can be adjusted to improve the visual
effect.

Figure 5: Assembling the leaves. The flower has 3 layers with 6 leaves.
The parameter h controls the distance between different layers, and α
controls the rotation.

Given the number of the stamens, the stamens are distributed
randomly on the receptacle. To generate the stamens, the receptacle
is divided into small cells at first, then the stamens are located into
these cells. The width of the cell is twice of the radius of the stamen,
and all the cells must be in the receptacle. The center of the central
cell and the center of the receptacle are coincident.

Starting from the central cell whose index is 0, the index increases
along a spiral curve (in yellow). When the user decide the number
of stamens n, the cell index of the i-th stamen si ∈ [0,m] is created
by

si = � i×m
n
�, (1)
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Figure 6: The models in different curvatures. When ω = 0, the petal is a plane. When ω > 0, the petals curl up. When ω < 0, the petals curl down.

where m is the maximum index of the cells and i ∈ [0,n). The
position of the i-th stamen is the same with the sith cell (Fig. 7). The
rotation angle of each stamen is set randomly, which looks more
natural. If n is larger than m, we set n = m.

(a) (b)

Figure 7: The distribution of the stamens. (a) The cells and the indices
in the receptacle. (b) The result when n = 30 (top) and n = 60 (bottom).

The petals are distributed around the receptacle. User can define
the number of petal layers, the number of petals and the sizes of
petals. A rotation angle is computed to ensure the petals are evenly
distributed. The opening state is dominated by an input angle β ,
which depicts the angle between the petals and the stem (Fig. 9).

(a) (b)

Figure 8: The collision handling for petals.

Collisions and overlaps may appear between different petal layers.
To handle the problem, a straightforward but effective strategy is
designed. As illustrated in Fig. 8a, we set a small interval between
adjacent layers. In the same layer, there is also an interval between
adjacent petals. These two intervals are chosen empirically, but users

can change the values in the system to obtain different models. We
define a maximum circle to define the flower bud. As depicted in
Fig. 10 The shape is controlled by the radius and the position of the
maximum circle. A closing angle is provided to adjust the entire
shape when the petals are closed simultaneously. Also, users can
change the closing angle to edit the closed shape.

To generate more realistic flowers, we add random factors to some
procedures. For example, the size of the petal is set as 0.8, and the
random factor is set as 0.1, then the size of petals is generated within
[0.7,0.9]. More experimental results can be found in Section 5.

(a) β = 25 (b) β = 35 (c) β = 45

(d) β = 55 (e) β = 65 (f) β = 75

Figure 9: Different opening angle β are applied in the flower model.

3.3 Blooming Animation

The blooming animation can be generated using linear interpolation
of the corresponding points of the closed flower Pa and the opening
flower Pb. However, we find that the “blooming” is not obvious if we
only calculate the interpolation of the vertices positions. Therefore,
we also calculate the interpolation of the closed angle βa and the
opening angle βb. We utilize unit vectors to represent the rotation
angles. We introduce a unit vector da to denote βa that da points to
the top of the petal from the root of the petal. Also, a unit vector db
is defined to represent the opening angle βb. After the number of
interpolation frames m and the speed are determined, the interpolated
frames can be calculated. We use τt = {Pt ,βt} to describe the state
of the t-th frame, where Pt = {pt

i |i = 1, ...,N} and βt represent the
positions of the vertices and the rotation angle. N is the number of
the petal vertices. In practice, we use a unit vector dt to represent βt .
The position and the rotation of the central vein at the t-th frame can
be calculated as:
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(a) (b) (c)

(d) (e) (f)

Figure 10: The closed states of the flower bud. The maximum circle
controls the shape. Different radius generates different shapes in (a),
(b) and (c). Different position also generates different shapes in (d),
(e) and (f).

pt
i = (1− xt)×pa

i + xt ×pb
i , (2)

dt =
sin(xt ×Ω)

sinΩ
×da +

sin[(1− xt)×Ω]

sinΩ
×db, (3)

Ω = arccos(da ·db), (4)

where Ω is the angle between the two directions da and db. xt
controls the interpolation state based on the frame index and the
speed, and xt ∈ [0,1], bounded by x0 = 0 and xm = 1. We provide a
curve to control the blooming speed, as shown in Fig. 11, and the
speed of frames v = {v1,v2, ...,vm} can be sampled on the curve.
The xt can be calculated by

xt =
∑t

j=1 v j

∑m
j=1 v j

. (5)

Figure 11: The speed curve to control blooming animation.

4 TEXTURES GENERATION

Users can define the colors for each component, then our system
automatically produce the corresponding texture based on the ge-
ometry. We propose a heuristic method to generate the texture. The

textures of stamens and the receptacle are created using the input
colors. Then the system adds a disturbance to make the stamens and
receptacle more natural.

4.1 Textures for Petals
Through observation of the real petals, we define a set of rules for
the texture generation. Generally, the color of petals is not evenly
distributed, and there are some streaks on the petals. To create the
textures, we define a mask for the petal component. In the mask, the
pixel saves the density of the color for the vertex on the petal. Each
pixel is assigned with a density parameter τ ∈ [0,1]. We utilize a
heuristic method to simulation the diffusion of the pigments on the
petal. The generation rules are defined as follows.

• The bottom vertex ps = (xs,ys,zs) and the top vertex pe =
(xe,ye,ze) of the petal are selected.

• We employ the backtracking method to find the shortest path
from ps to pe on the geometry. Most paths are pruned because
the results exceed the length of the shortest path. The final
path is shown in Fig. 12b.

• The densities τs and τe are specified for ps and pe.

• The density τc for the vertex pc is calculated based on the
distances to ps and pe:

τc = τs +
dist(ps,pc)

dist(ps,pe)
∗ (τe− τs), (6)

dist(ps,pe) =
√

(xe− xs)2 +(ze− zs)2, (7)

(a) (b) (c)

Figure 12: The formation of the petal streaks. (a) The final path. (b)
The density decreases when pc is far from ps. (c) The density map.

In general, the colors at the edge and the root are different from
the center. Therefore, we set some parameters to control the density
and the range as shown in Fig. 13. We also add some randomness to
the mask to make the final texture more realistic.

4.2 Texture for Leaves
The texture generation for the leaves is similar to the petals, which is
created according to the specified rules. However, the leaves usually
have regular veins. We specify the pattern of leaf veins, and users
can set the number of branches and the width of veins, as illustrated
in the Fig. 14. Also, we add some noises to the output textures.
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(a) (b) (c)

Figure 13: The texture of the petal. (a) The color at the edge is lighter
than the center. (b) The color at the root is lighter than the other parts.
(c) The final texture.

(a) (b) (c)

Figure 14: (a) The leaf veins with five narrow branches on each side.
(b) The leaf veins with six narrow branches on each side. (c) The leaf
veins with six broad branches on each side.

5 EXPERIMENTS AND VALIDATION

5.1 The Effectiveness of the Parameters

To adjust the parameters, we designed a simple but intuitive user
interface that is easy-to-use for novice users. Our system provides
84 parameters to generate 3D flowers in different styles. In most
cases, users only need to adjust part of the parameters to create a
new model, since some parameters are related to other parameters.
In this section, we present experimental results for several important
parameters.

Different geometry. By modifying the parameters, differen-
t shapes can be produced, including the components in different
shapes, the quantity of the components and the assembly patterns.
Fig. 15 lists three flower models in different random factors. These
models are different in petal size and opening angle β . For the
leaves, the parameters are the same.

The petals in different layers may overlap. As shown in Fig. 16a,
the first layer (in green) is almost on top of the second layer (in
yellow). To avoid the overlaps, we change the distributions for
different layers. As shown in Fig. 16b, and Fig. 16c, the lower petals
are rotated to avoid the upper petals.

As shown in Fig. 17, our system is capable of generating multiple
flowers in a scene. After producing various flowers, we put them
together to obtain a blossom cluster. It takes 20 minutes to produce
the blossom cluster, including the component generation, the texture
generation and the layout. To reduce the modeling time, each param-
eter is defined in a reasonable range initially so that we can produce
the flowers with little adjustment. It makes our system suitable for
generating large gardens in VR/AR environment. Moreover, it is
efficient and convenient for 3D designers.

(a)

(b)

Figure 15: Different flower models based on the random factors. The
left one is the neutral flower. (a) Different petal size. (b) Different
opening angle β .

(a) (b) (c)

Figure 16: To avoid the overlaps, the petals in different layers are
rotated. The first, second and third layers are marked in green, yellow
and blue.

Different texture. As shown in Fig. 18, we can obtain various
textures for the flowers by modifying the parameters. After the user
specifies the basic color, the system calculates the densities for each
vertex automatically, then it generates the textures for the petals.
Moreover, the user is able to change the parameters at any time and
get real-time feedback. According to our survey, designers usually
need 1–2 hours to draw a texture for the flowers or edit the image
to create a texture. In our system, it only takes a few seconds to
produce the textures for the entire flower. Also, designers can export
the textures for further modification.

Blooming animation. As shown in the Fig. 19, we present a
30-frame blooming animation. Fig. 19a contains all the states. The
complete animation can be seen in the supplementary video. Al-
though the animation is implemented using linear interpolation, the
visual result looks good. However, real blooming process is much
more complex than this one, more works can be investigated to
improve the animation.

Modeling results. Users is able to generate flowers quickly using
this system. It only takes a few seconds to generate flowers even
if users set all the parameters. Also, our system provides real-time
feedback when the parameters are changed. As mentioned before, it
is capable of producing a garden rapidly using our system.

We create 10 different flowers in Fig. 20. At the same time, our
system is not limited to real flowers, i.e., it is able to create imaginary
and surreal flowers (Fig. 20i and Fig. 20j). We document the model
information and time consumption in Table 2. Even for complex
flowers, it only takes less than 5 seconds.

17

Authorized licensed use limited to: BEIHANG UNIVERSITY. Downloaded on March 02,2021 at 08:05:03 UTC from IEEE Xplore.  Restrictions apply. 



(a) (b) (c) (d)

Figure 17: The scene with blossom clusters.

Figure 18: Different textures for the petals.

Table 1: The comparison of computation time between different ap-
proaches.

Method #Petals #Frames Total time
Zheng et al. [35] 14 73 11min55s

Ours 25 50 4.21s

5.2 Comparison
To investigate the efficiency, we make several experiments for the
generation process. As shown in Fig. 21, the model generated by
our method is compared with the model in [35], which creates the
blooming sequence according to the captured point clouds. The
model information and computation time are listed in Table 1. It
takes 9.80 seconds per frame to generate the sequence, i.e., it takes
more than 11 minutes to generate the bloom animation. However, it
only takes 4.21 seconds to generate a entire blooming animation for
a similar 3D flower using our method. Our method also generates
components such as stamens, receptacle and leaves.

We also invited 3D designers to create similar flowers using their
familiar tools. The designers employ Houdini [29] to model the
flowers, and the results are listed in Fig. 22. In this experiment, we
produced two template flowers and asked the designers to generate
similar ones. The geometries are similar, but the textures are slightly
different from the texture drawn by designers. It takes 4 hours to
create each flower for the designers, including the modeling and the
texture generation. But it only takes 3 minutes to produce similar
flowers for experienced users with our system. The time comparison
is documented in Table 4.

5.3 User study

Finally, we conduct a user study to evaluate the effectiveness of
our system. We invited 16 designers and ordinary users to test and
evaluate our system. We design a questionnaire which reflects six
qualities of our system. Table 3 documents the average scores for
the six qualities. It shows the strengths of our system and where
need to be enhanced. The scores range from 0 to 10, where 0 is
the worst and 10 is the best. The results show that our system is
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(a) (b)

Figure 19: The blooming animation.

Table 2: The parameters and information of the flowers.

Example #Petals #Stamens #Leaves #Vertices #Faces Computation time
Fig. 20a 8 21 2 4186 8111 3.22s

Fig. 20c 12 11 2 4865 9327 3.24s

Fig. 20d 13 50 2 8071 15487 4.50s

Fig. 20e 21 22 2 5073 9495 2.98s

Fig. 20f 8 56 4 7906 15551 2.67s

Fig. 20g 55 35 0 13518 25495 4.46s

Fig. 20h 7 6 2 3891 7519 3.06s

easy to learn (7.87) and easy to use (8.06). Also, the parameters are
reasonable (8.31) and the flowers are diverse (7.62). However, the
visual aesthetics (6.75) and the fidelity (6.68) are relatively low.

Intraclass Correlation Coefficient (ICC) [32] is employed to eval-
uate the consistency of the questionnaire. We calculated ICC for the
user study, and the average measurement is 0.932. If the measure-
ment is larger than 0.75, the consistency is high. This confirms the
consistency and credibility of our result.

Table 3: The result of the user study.

Attribute Average score (0-10)
Easy to learn 7.87

Easy to use 8.06

Rationality of parameters 8.31

Diversity of flowers 7.62

Visual aesthetics 6.75

Fidelity of results 6.68

5.4 Limitations
Our system is not without limitations. Firstly, our approach cannot
generate inflorescence directly at present like [9, 18]. It also does
not include the modeling of carpel and sepal. Secondly, our system
does not employ biological knowledge for the modeling. As a
result, it can not produce flowers in actinomorphic or zygomorphic

manner. Thirdly, our system cannot produce flowers directly from
photos, which is more convenient for designers to generate real
flower models.

6 CONCLUSION

In this paper, we propose a framework for rapid modeling of flowers.
It is able to generate 3D components for flowers and assemble them
in various ways. The textures of the flowers can be synthesized
automatically. The geometries and the textures can be controlled
by adjusting the system parameters. This greatly simplifies the
work for designers and improves their modeling efficiency. Artists
can use our system to build a virtual garden landscape quickly
with various flowers. They just need to finetune the parameters to
obtain the desired styles, or they can modify the textures to meet
their expectations. With an intuitive and easy-to-use interface, even
novices without any modeling experience can create 3D flowers
rapidly. Due to the low computational cost, our system can be
integrated into a mobile application.

In the future, we plan to improve our system from three aspects.
First, an image-based interface is helpful for the flower generation.
This can further simplify the parameter setting procedure. Second,
biologically-based rules may enhance the geometry and texture
generation. The produced flowers may look more real and natural.
Third, we consider to add more functions into our system such as
inflorescence.
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(a)

(b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 20: Generation of different flower models. The models in (b) are given with different opening angles. The other flowers are in different views.
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Table 4: The comparison of modeling efficiency.

Example Tool Time Total time
Geometry Texture Parameters Computation

Fig. 22a,b
Our system / / 3.4min 4.2s 3.5min

Houdini 2.8h 1.4h / / 4.2h

Fig. 22c
Our system / / 2.9min 3.7s 3min

Houdini 2.4h 1.5h / / 3.9h

(a) (b)

Figure 21: The comparison of modeling results between different
approaches. (a) The 3D flower in [35]. (b) Similar flower generated
using our approach.
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APPENDIX

Table 1: Parameter list for petal.

Parameters Type Min value Max value Attribute
Width float 0.05 0.4 width of petal

Length float 0.1 0.5 length of petal

Symmetry bool / / symmetry or not

ControlPoints int 3 10 the number of control

points of edge curve

Table 2: Parameter list for receptacle.

Parameters Type Min value Max value Attribute
MinWidth float 0.03 0.08 min width of recepta-

cle

MaxWidth float 0.05 0.1 max width of recepta-

cle

Height float 0.02 0.1 height of receptacle

DivideExtent int 4 7 extent of subdivision

BranchRadius float 0.02 0.7 radius of branch

BranchLength float 0 2 length of branch

BranchCurve float 0 1 choose the curve of

branch

Table 3: Parameter list for stamen.

Parameters Type Min value Max value Attribute
CylinderHeight float 0.01 0.08 height of cylinder in

stamen

CylinderWidth float 0.01 0.05 width of cylinder in s-

tamen

DivideExtent int 4 6 extent of subdivision

TubeRadius float 0.02 0.7 radius of tube

TubeLength float 0 2 length of tube

TubeCurve float 0 1 choose the curve of

tube

Table 4: Parameter list for leaf.

Parameters Type Min value Max value Attribute
Width float 0.05 0.4 width of leaf

Length float 0.1 0.5 length of leaf

Symmetry bool / / symmetry or not

ControlPoints int 3 10 the number of control

points of edge curve

SerrateMode bool / / serrate or not

SawtNum int 5 30 the number of saw-

teeth in each edge

SawHeight float 0.01 0.3 the height of sawteeth

in each edge

Table 5: Parameter list for animation.

Parameters Type Min value Max value Attribute
FrameNum int 10 100 the number of frames

FPS int 20 80 the number of frames

transmitted per sec-

ond

SpeedCurve float 0 1 speed curve of anima-

tion
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Table 6: Parameter list for assembling petals.

Parameters Type Min value Max value Attribute
LayerNum int 1 5 the number of petal

layers

LayerXNum int 1 20 the number of petals

in layer X

LayerXSize float 0.1 1.2 size of petals in layer

X

Radius float 0.02 0.08 radius of the circle

surrounded by petals

CenterHeight float -0.1 0 height of petals in lay-

er 1

DeltaRadius float 0 0.3 radius difference be-

tween adjacent layers

DeltaCenter float -0.3 0 height difference be-

tween adjacent layers

DeltaCenterIn float 0 0.1 height difference be-

tween adjacent petals

in same layer

DeltaAngle float 0 3.14 angle difference be-

tween adjacent layers

CloseAngle float 15 50 the angle when the

flower is closed

OpenAngle float 40 100 the angle when the

flower is opened

BudRadius float 0.03 0.2 the maximum circle

radius of flower bud

BudPosition float 0 0.95 the position of the

maximum circle of

flower bud

CentralCurve float 0 1 curve of petal’s cen-

tral vein

Weight float -30 30 weight in Fig. 6

CloseRandom float 0 20 randomization level

of close angle

OpenRandom float 0 20 randomization level

of open angle

SizeRandom float 0 0.2 randomization level

of petal’s size

Table 7: Parameter list for assembling stamens.

Parameters Type Min value Max value Attribute
Num int 0 200 the number of stamen-

s

RandomSeed int 0 10 seed for random num-

ber generation

Table 8: Parameter list for leaf texture.

Parameters Type Min value Max value Attribute
Color vector (0,0,0) (1,1,1) base color of leaf

ContourWidth float 0 1 contour width of

leaf’s texture

ContourWeight float 0.7 1.3 weight of contour

VeinWidth float 0.02 0.2 width of leaf’s vein

VeinNum int 3 10 the number of veins

VeinWeight float 0.8 1.2 weight of vein

CurveNum int 0 5 the number of curves

to change color

CurveWeight float 0.9 1.1 weight of curve

WeightRandom float 0 0.1 randomization level

of weight

Table 9: Parameter list for assembling leaves.

Parameters Type Min value Max value Attribute
LayerNum int 1 5 the number of leaf

layers

LayerXNum int 0 5 the number of leaves

in layer X

LayerXSize float 0.3 1 size of petals in layer

X

Radius float 0 0.6 radius of the circle

surrounded by leaves

CenterHeight float -0.1 0 height of leaves in

layer 1

DeltaAngle float 0 3.14 angle difference be-

tween adjacent layers

RotateAngle float 30 150 rotate angle of leaves

IntervalHeight float 0.1 0.5 the interval height of

two layers

DeltaHeight float 0 0.1 height difference be-

tween adjacent leaves

in same layer

CentralCurve float 0 1 curve of leaf’s central

vein

Weight float -30 30 weight in Fig. 6

SizeRandom float 0 0.2 randomization level

of petal’s size

AngleRandom float 0 10 randomization level

of rotate angle

Table 10: Parameter list for petal texture.

Parameters Type Min value Max value Attribute
Color vector (0,0,0) (1,1,1) base color of petal

ContourWidth float 0 1 contour width of

petal’s texture

ContourWeight float 0.7 1.3 weight of contour

StreakWidth float 0.02 0.2 width of petal’s streak

MaxWeight float 1 1.2 max weight of streak

MinWeight float 0.8 1 min weight of streak

RootWidth float 0 1 width of petal’s root

RootWeight float 0.8 1.2 weight of root

CurveNum int 0 5 the number of curves

to change color

CurveWeight float 0.9 1.1 weight of curve

WeightRandom float 0 0.1 randomization level

of weight

Table 11: Parameter list for receptacle texture.

Parameters Type Min value Max value Attribute
Color vector (0,0,0) (1,1,1) base color of recepta-

cle

WeightRandom float 0 0.2 randomization level

of weight

Table 12: Parameter list for stamen texture.

Parameters Type Min value Max value Attribute
Color vector (0,0,0) (1,1,1) base color of stamen

WeightRandom float 0 0.2 randomization level

of weight
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