

Diverse Dance Synthesis via Keyframes with Transformer Controllers

Junjun Pan^{1,2}, Siyuan Wang¹, Junxuan Bai^{1,2}, Ju Dai²

1 Beihang University 2 Peng Cheng Laboratory

Contents

- Introduction
- Method details
- Experimental results
- Limitations and conclusion

Motivation

- Animation production is tedious and time-consuming.
- Little research investigates efficient keyframe-based motion synthesis for an impromptu dance performance with neural networks.
- Transformer can well model long-range dependency by leveraging the query-key correlation to different tokens.

Character in film ["Wreck-It Ralph"]

Motion capture

Research on walk animation [WCX21]

Related work

• Deep learning based motion modeling

- Deep learning framework for motion synthesis and editing [HSK16]
- Spatio-temporal manifold learning [WHSZ21]

Dance motion synthesis

- Dance with melody [TJM18]
- Choreonet [YWJ*20]

Motion transition generation

- Data-driven autocompletion for keyframe animation [ZvdP18]
- Robust motion in-betweening [HYNP20]

Challenges

- Dance performance is **highly irregular** with complex kinetics, and dance movements are inherently diversified.
- A well-choreographed dance animation requires **collaborative efforts** between animators, dancers, and choreographers, which is an expensive and tedious process.
- We propose a novel **keyframe-based** motion generation network **based on multiple constraints**, which can achieve diverse dance synthesis **via learned knowledge**.

Contributions

- A novel neural network based on LSTM and Transformer for complex motion generation via keyframes. The model is elaborately controlled under the root trajectory and the velocity factor.
- We design the **velocity factor** constraint for fine-grained dance motion synthesis.
- The data synthesized by our technique on the dance dataset **obtain better accuracy** in terms of various evaluation criteria, and the quality of character animation **is also higher**.

Contents

- Introduction
- Method details
- Experimental results
- Limitations and conclusion

Method overview

- A time series modeling and synthesis problem.
- Conditions: keyframes, root trajectory, velocity factor.
- Targets: diverse and natural dance animations.

9

12

13

The root trajectory controller

- Input
 - $\hat{p}_{t+1,u}^r$ refers to the target root trajectory segment
 - $\check{p}_{t+1,u}^r$ is the modification of $\hat{p}_{t+1,u}^r$
- Output
 - The representation of the root trajectory constraint

Velocity factor

Loss function

• The complete loss function

$$\mathcal{L} = w_{rec} \mathcal{L}_{rec} + w_{con} \mathcal{L}_{con} + w_{root} \mathcal{L}_{root} + w_{key} \mathcal{L}_{key} + w_{vfac} \mathcal{L}_{vfac}$$

• Reconstruction loss \mathcal{L}_{rec}

$$\mathcal{L}_{rec} = \frac{1}{N} \sum_{t=k_1+1}^{k_2} \|\tilde{\mathbf{X}}_t - \mathbf{X}_t\|^2,$$

• Posture consistency loss \mathcal{L}_{con}

$$\mathcal{L}_{con} = \mathcal{L}_{bone} + \mathcal{L}_{contact} + \mathcal{L}_{velocity}$$

$$\mathcal{L}_{bone} = \frac{1}{N} \sum_{t=k_1+1}^{k_2} \left(\sum_{(i,j)\in\mathcal{B}} \left\| \| \tilde{\mathbf{p}}_t^i - \tilde{\mathbf{p}}_t^j \|_2 - l_{ij} \right\|^2 \right)$$

$$\mathcal{L}_{contact} = \frac{1}{N} \sum_{t=k_1+1}^{k_2} \left(\sum_{i}^{\mathcal{F}} \tilde{c}_t^i \| \tilde{\mathbf{v}}_t^i \|_2 \right)$$

$$\mathcal{L}_{velocity} = \frac{1}{N} \sum_{t=k_1+1}^{k_2} \left(\sum_{i}^{\mathcal{J}} \| \tilde{\mathbf{v}}_t^i - (\tilde{\mathbf{p}}_t^i - \tilde{\mathbf{p}}_{t-1}^i) \|^2 \right)$$

Loss function

- Root trajectory smooth loss \mathcal{L}_{root} $\mathcal{L}_{root} = \frac{1}{N} \left(\sum_{t=k_1+1}^{k_2} \|\tilde{\mathbf{p}}_t^r - \tilde{\mathbf{p}}_{t-1}^r\|^2 + \sum_{t=k_1+1}^{k_2} \|\tilde{\mathbf{o}}_t^r - \tilde{\mathbf{o}}_{t-1}^r\|^2 \right)$
- Keyframe consistency loss \mathcal{L}_{key}

$$\mathcal{L}_{key} = \begin{cases} \frac{1}{2m} \left(\sum_{t=k_1+1}^{k_1+m} \| \tilde{\mathbf{p}}_t - \mathbf{p}_{k_1} \|^2 + \sum_{t=k_2-m+1}^{k_2} \| \tilde{\mathbf{p}}_t - \mathbf{p}_{k_2} \|^2 \right), & N > 2m \\ \frac{1}{N} \sum_{t=k_1+1}^{k_2} \left(\frac{t-k_1}{N} \| \tilde{\mathbf{p}}_t - \mathbf{p}_{k_1} \|^2 + \left(1 - \frac{t-k_1}{N}\right) \| \tilde{\mathbf{p}}_t - \mathbf{p}_{k_2} \|^2 \right), & N \le 2m \end{cases}$$

• Velocity factor consistency loss $\mathcal{L}_{vfac} \mathbf{x}$

$$\mathcal{L}_{vfac} = \frac{1}{N} \sum_{t=k_1+1}^{k_2} \|\tilde{\mathbf{f}}_t - \hat{\mathbf{f}}_t\|^2$$

Contents

- Introduction
- Method details
- Experimental results
- Limitations and conclusion

Different root trajectories

Different velocity factors

Motion transitions with different lengths

Quantitative metrics

- L2 distances of root-relative position (LRP) $LRP = \frac{1}{|\mathcal{D}|} \frac{1}{N} \sum_{c \in \mathcal{D}} \sum_{t=k_1+1}^{k_2} \|\tilde{\mathbf{p}}_t^b(c) - \mathbf{p}_t^b(c)\|_2$
- Average accuracy of the velocity factor (AVF)

$$AVF = \frac{1}{|\mathcal{D}|} \sum_{c \in \mathcal{D}} \begin{cases} 1, & if \quad g_{v}(c) < \delta_{v} \\ 0, & otherwise, \end{cases}$$
$$g_{v}(c) = \frac{1}{N} \frac{1}{M} \sum_{t=k_{1}+1}^{k_{2}} \sum_{i=1}^{M} |\tilde{f}_{t}^{i}(c) - \hat{f}_{t}^{i}(c)|$$

• Average accuracy of the root trajectory (ART)

$$ART = \frac{1}{|\mathcal{D}|} \sum_{c \in \mathcal{D}} \begin{cases} 1, & if \quad g_r(c) < \delta_r \\ 0, & otherwise, \end{cases}$$
$$g_r(c) = \frac{1}{N} \sum_{t=k_1+1}^{k_2} \|\tilde{\mathbf{p}}_t^r(c) - \hat{\mathbf{p}}_t^r(c)\|_2$$

Ablation study

Table 2: The LRP evaluation for the transition sequence at the length of 10, 50, 100, 150, and the average result (AVG). The best results are shown in bold.

Models		AVG			
	10	50	100	150	AVU
Interpolation	13.83	87.59	113.59	124.47	84.87
Harvey et al. [HYNP20]	141.79	116.40	201.43	297.22	189.21
One LSTM	32.81	70.49	88.11	100.81	73.06
Condition-FC	37.30	67.03	85.20	96.39	71.48
One decoder	28.36	51.15	65.04	77.24	55.45
Without Velfac constraint	34.37	62.30	83.81	97.52	69.50
Without \mathcal{L}_{key}	41.59	82.95	97.31	105.46	81.83
Whole model	27.07	50.06	63.01	74.37	53.63

Table 3: The AVF evaluation for transition sequence at the length of 10, 50, 100, 150, and the average result (AVG). The best results are shown in bold.

Models		AVC			
	10	50	100	150	AVG
One LSTM	0.68	0.75	0.70	0.67	0.70
Condition-FC	0.68	0.71	0.68	0.65	0.68
One decoder	0.71	0.75	0.73	0.70	0.72
Without Velfac constraint	0.60	0.60	0.53	0.49	0.56
Without \mathcal{L}_{key}	0.66	0.68	0.66	0.64	0.66
Whole model	0.72	0.76	0.75	0.72	0.74

Table 4: The ART evaluation for transition sequence at the length of 10, 50, 100, 15, and the average result (AVG). The best results are shown in bold.

Models		AVG			
	10	50	100	150	AVU
One LSTM	0.63	0.74	0.76	0.74	0.72
Condition-FC	0.47	0.64	0.67	0.67	0.61
One decoder	0.63	0.55	0.48	0.39	0.51
Without Velfac constraint	0.62	0.59	0.45	0.34	0.50
Without \mathcal{L}_{key}	0.62	0.42	0.33	0.27	0.41
Whole model	0.86	0.85	0.80	0.72	0.81

Comparison with other methods

Comparison with other methods

More results

More results

Contents

- Introduction
- Method details
- Experimental results
- Limitations and conclusion

Limitations

- The generated dance motion have the footstep floating problem.
- When providing control conditions that differ significantly from the training set, our method produces poor results similar to many data-driven tasks.
- The user may give some extremely contradictory control conditions, which will also cause the unreality of the results.

Conclusion

- We propose a complex motion generation network from keyframes, which can realize fine-grained control for complex motion through the trajectory sequence of the root joint and the velocity factors of different body parts.
- We have conducted three categories of quantitative evaluation and ablation experimental analysis, and have compared our algorithm with the state-of-the-art methods, which proves the superiority of our network.
- In the future, we will focus on the **footstep floating problem** and **multiple constraint contradiction issue** in complex motion synthesis.

Source Code

• https://github.com/godzillalla/Dance-Synthesis-Project

Thank You!

Q&A: Any question can be sent to the authors! Email: Ju Dai : daij@pcl.ac.cn

