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Abstract
2D caricature editing has shown superior performance. However, 3D exaggerated caricature face (ECF)modelingwith flexible
shape and texture editing capabilities is far from achieving satisfactory high-quality results. This paper aims to model shape
and texture variations of 3D caricatures in a learnable parameter space. To achieve this goal, we propose a novel framework
for highly controllable editing of 3D caricatures. Our model mainly consists of the texture and shape hyper-networks, texture
and shape Sirens, and a projection module. Specifically, two hyper-networks take the texture and shape latent codes as
inputs to learn the compact parameter spaces of the two Siren modules. The texture and shape Sirens are leveraged to model
the deformation variations of textural styles and geometric shapes. We further incorporate precise control of the camera
parameters in the projection module to enhance the quality of generated ECF results. Our method allows flexible editing
online and swapping textural features between 3D caricatures. For this purpose, we contribute a 3D caricature face dataset
with textures for training and testing. Experiments and user evaluations demonstrate that our method is capable of generating
diverse high-fidelity caricatures and achieves better editing capabilities than state-of-the-art methods.

Keywords 3D exaggerated caricature face · Texture modeling · Shape reconstruction · Latent code

1 Introduction

ECF modeling is an essential aspect of emerging applica-
tions such as Metaverse [3], role-playing [5], and animation
filmmaking [17]. Allowing the free and flexible editing of
geometric shape and texture styles of caricature faces can
significantly improve the user stickiness of these applica-
tions.

Thanks to the advancement of the generative adversarial
network (GAN) [30, 40], conspicuous works [25, 33] of 2D
ECF modeling have been achieved, which can execute exag-
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gerated shape and textural styles reconstruction. However,
2D ECF generation lacks depth and geometric shape infor-
mation and maintains restricted expressive and modeling
capabilities. Unfortunately, the 3D ECF is not well explored.
The primary challenge lies in producing high-quality 3D car-
icatures with exaggerated shapes and diverse textures while
maintaining controllability over shape and texture.

To tackle the above shortages, earlier endeavors [19, 28]
shift their attention to producing 3D ECF through man-
ual manipulation using traditional tools such as OpenGL
and UV mapping. Despite the impressive performance, the
manual manner is a grueling and labor-intensive process.
Recent progress to reconstruct 3D ECF is mainly based on
3D face data [19, 31]. However, those approaches do not
allow flexible customization, such as shape exaggeration,
texture editing, and style variations. The deep-deformable
model [19] is capable of generating exaggerated 3D carica-
ture shapes through an Multilayer Perceptron (MLP)-based
framework for building a deformable surface model, but it
can not perform multiple styles of cross-caricature editing.
Although 3D-CariNet [34] can edit caricatures with a fixed
number of styles, it must prepare the styles in advance and
can only edit offline. Toward these challenges, this work aims
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Fig. 1 We present a novel approach to flexible editing shapes and
textures of 3D caricatures. In testing, our network can reconstruct
high-quality 3D caricatures (a), enable varying degrees of semantic

editing (b), conduct point-handle-based editing (c), and implement
cross-character texture editing with learned latent codes (d)

to provide an agile manner for 3D ECF modeling: the ability
to manipulate 3D face shapes flexibly and the ability to per-
form stylistic variations and detail transport among different
caricatures.

In this paper, we propose a novel framework for 3D ECF
generation, which leverages a pair of learnable latent codes
to represent the shape and texture of caricature faces and
flexibly achieve shape and texture manipulation. Our net-
work mainly consists of the texture hyper-network, shape
hyper-network, texture siren, shape siren, and projection
module. The two hyper-networks take the latent codes as
input and generate transformation parameters for the siren
module. The two siren networks concentrate on learning
deformable values of 3D caricature texture and shape. The
projection module aims to improve generation quality with
reverse mapping using camera parameters. We optimize the
editable latent codes and the generation network through the
3D modeling loss and 2D projection loss. The 3D caricature
face modeling loss enables disentangling geometric shapes
and textural style information, and the 2D projection loss
facilitates improved perceptual quality. Our model not only
maintains the topological structure consistency of shape and
texture but also can decompose the texture and shape dur-
ing decoding. The powerful editing abilities of our work
are demonstrated in Fig. 1. Furthermore, we construct a 3D
training dataset to research high-quality 3D caricatures. We
improve the mesh density of the 3DCaricShop [31] dataset
and re-divide the original meshes of eyes and mouth. Experi-
ments on the 3DCaricShop dataset and user evaluations from
20 animation professionals validate the superiority of our
method against existing advanced methods. In summary, the
contributions of our method are mainly threefold:

– We propose a novel end-to-end network to generate high-
quality 3D caricatures from 2D images with flexible,
editable, and controllable capacities.

– Our method allows for diversified editing, consisting of
semantic editing, point-handle-based editing, and textu-
ral style editing across different characters.

– We contribute a new high-quality dataset of 3D caricature
faces with corresponding camera parameters to validate
the superiority of the proposed method against cutting-
edge methods.

2 RelatedWork

2.1 2D Caricature Editing

Caricature is drawing significant attention for artistic expres-
sions such as satire and humor through exaggerated geomet-
ric shapes and stylistically diverse textures [1, 8, 13]. Earlier
endeavors have investigated learning the shaped deformation
and appearance texture of caricature faces [11, 12, 17, 24].
However, those methods still have room for improvement in
the quality of caricature production and the exaggerations.

With the emergence of GAN and its superiority in con-
tent generation tasks [22, 30, 40], significant progress has
been made for ECF with different exaggerated shapes and
texture styles [23, 38, 41]. For instance, MW-GAN [16] con-
sists of a stylistic network and a shaped network designed to
perform stylistic transfer and shaped exaggeration, respec-
tively. It is capable of generating caricatures with arbitrary
stylistic and shaped exaggeration, which can be specified as
samples by random sampling of the latent code or from a
given caricature. StyleCariGAN [18] enables the automatic
creation of realistic and detailed caricatures with optional
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control over the degree of shape exaggeration and the type
of color stylization. CariGANs [5] is compromised of Cari-
GeoGAN and CariStyGAN modules. The CariGeoGAN
models geometry-to-geometry transformations from facial
photographs to caricatures, while the CariStyGAN transfers
stylized appearance from caricatures to facial photographs
without any geometric distortion. Nevertheless, those meth-
ods focus on 2D ECF generation from standard face images
and cannot perform its 3D counterpart generation. Our work
aims to produce 3D caricature faces with geometric shapes
and texture styles that can be flexibly edited.

2.2 3D Deformable ShapeModel

3D face deformable model [10, 26, 29] is divided into 3D
standard face deformable model [6, 9, 20] and 3D exagger-
ated face deformablemodel. 3DMM[2] represents a standard
face as a morphable model that includes shape and texture
parameters. It has been widely used in face reconstruction
and face editing [10] and has achieved outstanding perfor-
mance. According to the evolving demands in industries such
as Metaverse and anime, exaggerated face deformation has
been gradually emphasized. Researchers divert their atten-
tion to learning deformation spaces from standard faces to
generate exaggerated face models [37]. However, 3DMM-
based deformation spaces lack scalability and have limited
expressive capabilities in the 3D caricature field. Construct-
ing a dataset with 2D caricature images and 3D counterpart
shapes for creating 3D models of ECF has become a crucial
research direction [3, 4, 31]. Meanwhile, some approaches
explore the generation of 3D exaggerated faces by portraying
facial feature contours to enhance the user interaction experi-
ence [14, 15]. However, due to the mesh’s severe stretching,
the effectiveness of an expression is inadequate.

Another important branch focuses on studying 3D face
deformation representations. The primary 3D face deforma-
tion can be achieved through the signed distance function
(SDF) [7, 28] and the surface deformation function [19, 36].
Usually, the former category learns the continuous SDF rep-
resentation through MLP and then represents the whole 3D
face shape. The latter reconstructs a 3D caricature mesh by
modeling a template surface’s continuous surface deforma-
tion function through MLP-based networks. However, those
methods can not simultaneously perform texture rendering
and character style editing for 3D ECF generation. In con-
trast, our work can generate more natural and exaggerated
3D face shapes with diversified texture styles.

2.3 3D Caricature Reconstruction

In the early days, although combining stereowith class-based
knowledge could reconstruct 3D faces [35], and manipu-
late faces’ 3D shape and 2D surface reflectance components

to achieve 3D face editing [27], these methods struggle to
achieve diversified shape editing and flexible cross-character
style variations.. With significant progress in 2D caricature
editing and 3D deformable shape modeling, 3D ECF gener-
ation and editing have attracted much attention.

The most impressive and related to ours works are 3D-
CariGAN [39], 3DCarishop [31], 3D-CariNet [34], 3DMag-
icMirror [42]. 3D-CariGAN [39] proposes an end-to-end
network that transforms a normal face photo into a 3D car-
icature. However, it only generates exaggerated geometric
shapeswithout texture effects and cannot edit shapes and tex-
tures. 3DCarishop [31] is an important baseline work, which
collects the first large-scale 3D caricature dataset contain-
ing 2000 high-quality diversified 3D caricatures manually
crafted by professional artists. 3DCarishop also proposes a
novel view-collaborative graph convolution network (VC-
GCN) to generate high-fidelity 3D caricature. 3D-CariNet
[34] learns the shape and texture of 3D caricatures by design-
ing a graph convolutional autoencoder to build a non-linear
colored mesh model. 3DMagicMirror [42] reconstructs 3D
face shapes from photographs and every frame of video and
then converts 3D face shapes from regular style to carica-
ture style. All of these efforts require the preparation of
datasets of different caricature styles before realizing the cari-
cature face style transformation. In contrast, our method can
achieve shape and cross-character style editing with high-
quality flexibility by disentangling the shape and texture.

3 Methodology

3.1 Overview of the proposedmethod

Our work aims to generate 3D exaggerated caricatures auto-
matically with high-fidelity performance and online editing
capabilities. To achieve this goal, we propose a novel net-
work that combines the advantages of 3D caricature mesh
representation power (flexibility and the ability to edit eas-
ily) with the high-fidelity texture of 2D images. An overview
of the proposed framework is illustrated in Fig. 2. Our model
mainly consists of five components: texture hyper-network,
shape hyper-network, texture Siren, shape Siren, and projec-
tion block. The two hyper-networks receive the latent codes
of texture and shape as inputs and produce intermediate latent
representations, which will be transformed into the parame-
ters for texture Siren and shape Siren. The two Sirenmodules
concentrate on modeling each shape and texture as a defor-
mation of a fixed template surface. The projection block
projects the generated 3D caricature faces into corresponding
2D counterparts to leverage the 2D ground truth caricature
faces to supervise the network training and enhance the 3D
caricature face generation quality.
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Fig. 2 Overview of the proposed framework. Our model consists of
texture and shape hyper-networks, texture and shape Sirens, and a pro-
jection model. The network maintains two latent codes for the shape
and texture of 3D caricature faces, produces the parameters of the two
Siren modules using the two hyper-networks and the corresponding

transformation layers, predicts shape and texture deformation values
leveraging two Sirens, and aligns the shape and texture based on the
pixel alignment of each light given by the camera parameter in the pro-
jection module. We optimize the model through a 3D reconstruction
loss and a 2D projection loss

Choosing appropriate 3D face representation is vital for
exaggerated caricature generation. As validated in [19], face
mesh and surface demonstrate promising results. Therefore,
we leverage a standard template mesh as the geometry shape
representation.Our constructed facemesh consists of 35, 200
vertexes and 70, 383 surfaces, and the coordinate of each ver-
tex is denoted as θi = (x, y, z) ∈ R

3. Besides the original
vertexes, we also uniformly sample 17, 600 points on the
surface. We concatenate the two vertexes and obtain 52, 800
vertexes θ = {θi } ∈ R

52800×3 to serve as inputs for the
shape Siren. Textures of 3D caricatures come from corre-
sponding caricature images. Since the input dimension of
the image is 512 × 512 × 3, to ensure that the dimension of
the caricature image is consistent with the geometry shape
coordinate, we first implement convolution, max pooling,
and linear transformation operations for the input image to
obtain harmonious input α ∈ R

52800×3 for texture Siren.
To manipulate the texture and shape, We construct a pair of
latent codes zt ∈ R

256 and zs ∈ R
256 to store texture and

shape information, respectively. Since we represent 3D cari-
cature texture and shape as 3D vectors separately and model
their variations, we can obtain 3D ECF using an efficient and
uniform network structure.

3.2 Network Structure

In this section, we elaborate on the key components, con-
sisting of the texture hyper-network, shape hyper-network,
texture Siren, shape Siren, and projection modules. The two
hyper-networks possess the same architecture but do not
share parameters, so as to the two Siren modules. Thus, we

take the texture hyper-network and texture Siren as examples
to give details.

Texture Hyper-Network. The presented texture hyper-
network aims to model the function variations of 3D car-
icature textures. Inspired by StyleGAN [21], the texture
hyper-network takes the latent code as input and produces
the intermediate latent codes. Since the input latent space
must follow the probability density of the 3D ECF data,
which leads to some degree of unavoidable entanglement.
As observed in [21], the intermediate latent space is capable
of being free from the restriction mentioned above. Thus,
we first utilize the hyper-network to learn intermediate rep-
resentation and then transform it into the desired parameters
required by the texture Siren.

Our texture hyper-network is made up of four hyper-
network blocks, and we illustrate one hyper-network block
in Fig. 3, which consists of a fully connected (FC) layer
and a LeakyReLu activation layer. Precisely, the texture
hyper-network receives the texture latent code zt as input
to learning the intermediate representation wt , which will
be transformed into frequency γt and phase shift βt through
texture transformation layer [21]. γt and βt are leveraged
to condition each layer of the subsequent texture Siren. The
whole learning process can be expressed as follows:

wt = Fth(zt ;φth), (1)

γt , βt = Fta(wt ;φta), (2)

where Fth and Fta denote the texture hyper-network and
texture transformation layer. φth and φta are corresponding
parameters that should be optimized.
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Fig. 3 The hyper-network block architecture. ×4 means stacking four
hyper-network blocks

Shape Hyper-Network. The shape hyper-network and
transformation layer concentrate on producing parameters
required by the shape Siren. Both have the same structure
as the texture hypernetwork and transformation layer with-
out sharing parameters. Thus, the data processing flows have
exactly the same forms, which transforms shape latent code
zs to γs and βs through shape transformation layer [21]:

ws = Fsh(zs;φsh), (3)

γs, βs = Fsa(ws;φsa), (4)

where Fsh and Fsa signify the shapehyper-network and shape
transformation layer, ws is the intermediate representation
for caricature shape. φsh and φsa refer to the corresponding
parameters.

Texture Siren. In our framework, we model the defor-
mation values of texture for learning the latent space of 3D
caricature instead of directly modeling texture values. We
find it is more effective to learn the deformation values and
model them as continuous functions. We leverage the tex-
ture Siren to represent the constant function defined on the
surface of the template.

Our texture Siren is inspired by the FiLM layer [43],which
enables conditional adjustment of texture features. The FiLM
layer works by first giving a texture input feature and then
scaling and offsetting the input texture feature through the
sinusoidal function. As shown in Fig. 4, Texture Siren con-
tains a linear FC layer and an affine transformation layer
with its frequency γt and phase shift βt coming from the
texture hyper-network. The FC layer applies a linear trans-
form defined by a weight matrix Wα and the biases bα to
the texture input α. The Texture Siren constructs a learnable
Sine function, making the texture of the generated 3D ECF
more explicit and enables modeling continuous exaggerated
texture variations �α ∈ R

3.

F(α) = Wα · α + bα, (5)

Fig. 4 The siren block architecture. ×3 means stacking three Siren
blocks

�α = sin(γt · F(α) + βt). (6)

With the learned texture deformations�α, the final texture
representation pα of 3D ECF is obtained:

pα = α + �α. (7)

Shape Siren. Shape Siren is used to model the shape
deformation values �θ for 3D ECF reconstruction. The
shape Siren structure and shape data processing flow are sim-
ilar to those of texture Siren.

F(θ) = Wθ · θ + bθ , (8)

�θ = sin(γs · F(θ) + βs), (9)

pθ = θ + �θ. (10)

where F(θ) represents the linear transformation result of the
input θ defined by the weight matrix Wθ and the biases bθ .
pθ is the geometry shape values.

Projection module. The primary function of the projec-
tion module is to find the corresponding grid point of a 3D
ECF on the 2D image. Then we can obtain the texture value
of the 2D image corresponding point. The 3D face template
divides the face into the front face and back face based on
the mesh topology. Our work projects the front face of the
3D face mesh onto the 2D image along the light from the
center of the camera using the camera’s internal parameters
Cint and external parameters Cext . The projection method
and obtaining texture values method are as follows:

θ2D = Cint · Cext · θ, (11)

pα2D = FP (θ2D,X2D), (12)

where θ2D is the corresponding 2D coordinate positions of
the sampled mesh points projected onto the 2D caricature
image. FP represents an indexing function, which is used to
obtain the texture values pα2D of pixel positions θ2D on the
input 2D image X2D .
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3.3 Network Training

Our model aims to generate 3D caricature faces with exag-
gerated geometry shapes and diversified texture styles given
the editable latent codes of shape and texture. To achieve
the goal, we leverage the 3D modeling loss Lmod of the cor-
responding 3D caricatures and 2D projection loss Lpro to
optimize the whole network:

L = Lmod + Lpro. (13)

3Dmodeling loss. 3DECFmodeling of ourwork involves
shape and texture learning. Regarding shape modeling, we
compute the vertex coordinate distances between the ground
truth p̂θ and the generated result pθ . The same computation
process is adopted for texturemodeling.We calculate the tex-
ture distance between the ground truth p̂α and the deformed
value pα . Thus, the 3D modeling loss consists of the texture
termLt and shape termLs , and can be formulated as follows:

Lmod = Lt + Ls, (14)

Lt = λ1

N

N∑

i

‖pα,i − p̂α,i‖22 + λ2

d
‖zt‖22, (15)

Ls = λ1

N

N∑

i

‖pθ,i − p̂θ,i‖22 + λ2

d
‖zs‖22, (16)

where N refers to the total number of sample points, d
denotes latent code dimension and is set to 256, λ1 signi-
fies the reconstruction weight, λ2 controls the regularization
on the latent codes.

2D projection loss. Generating high-quality textured 3D
caricatures requires 2D images with caricature styles. Thus,
we can project the 3D caricatures into their 2D counterparts.
We obtain corresponding coordinate points of 3D ECF mesh
on a 2D image by the projection module. We supervise the
learning process by calculating the distance between mesh
point texture values and the corresponding projected results
texture values.We utilize the 2D projection lossLpro to opti-
mize the whole network:

Lpro = 1

N

N∑

i

‖pα,i − pα2D,i‖22, (17)

where pα,i is the i-th mesh point texture values of 3D ECF,
and pα2D,i is the i-th texture values of the corresponding
mesh point projected onto the 2D image.

Fig. 5 The workflow of cross caricature texture editing

3.4 Face Editing and Style Customization

We next describe how to apply our network for face shape
editing and texture style editing. The generation results are
illustrated in Fig. 1.

Texture editing. Since the learned shape and texture fea-
ture spaces are separate, we can update the texture features
while keeping the shaped features unchanged. After finish-
ing optimizing the proposed network, each sampled texture
latent code in the texture latent space represents a 3D ECF
texture feature. Thus, we can transfer texture features from
one caricature to anotherwith the learned texture latent space.
We transfer the reference 2D image texture to a 3D ECF by
optimizing the new texture latent space zt,new. We exhibit
the workflow of cross caricature texture editing in Fig. 5.
Given the reference 2D caricature image and the target 3D
ECF, the relationship between the texture latent code before
transformationzt and the texture latent code after transforma-
tion zt,new is calculated by calculating the 3D ECF texture
reconstruction loss:

zt,new = argminztLt . (18)

Semantic editing. Regarding shape editing, our work
allows us to manipulate the learned shape latent space of
3D caricature faces directly for semantic editing.We resort to
the single attributemanipulation technique of InterFaceGAN
[32] for semantic editing. Each caricature in our training set
has a set of semantic labels, and ourwork can enable semantic
editing on the optimized latent shape space.

Point-handle-based editing. Our work also allows us
to manipulate the shape latent space of 3D caricatures
directly for point-handle-based editing. We refer to the deep
deformable [19] in the deformation editing of 3D caricature
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faces, where local deformation and local expansion neces-
sary are considered.

4 Experiments

In this section, we first describe experiment settings. Next,
we visualize experimental results and compare them with
cutting-edge methods [7, 19, 34] to demonstrate the supe-
riority. Finally, we conduct ablation studies to verify the
effectiveness of our network design.

4.1 Experiment Settings

Dataset. Empirical evaluations are conducted on the widely
used benchmark 3DCaricShop [31] dataset which owns 2K
meshes sculpted by 3D artists. 1,409 registered 3D caricature
meshes have been collected by the authors. The registered
meshes have vertex connectivity similar to FaceWarehouse
[4], with the neck area of the dataset removed and the holes in
the eyes and mouth closed. Also, the dataset contains 2,000
sets of face images and corresponding 3Dmodels (doneman-
ually by a modeler), labeled with camera parameters and 3D
keypoint information.

We fully utilize this dataset’s characteristics and select 531
caricature facemeshes that are frontal rather than side.Mean-
while, the original meshes of eyes and mouth are deleted and
re-divided. Then, the center of gravity of the full-facemesh is
obtained, the center of gravity encrypts the mesh, and finally,
the face images are inverted and mapped to the 3D model by
the camera parameters, and the points on the 2D images are
obtained to be the texture of the nearest points on the corre-
sponding 3D model pixel values. In this way, a textured 3D
exaggerated caricature face model is constructed. As shown
in Fig. 6, the dataset of 3DCaricshop does not have grids
for the eyes and nose, while our dataset has those grids. In
the meantime, our dataset possesses a full face texture. Ulti-
mately, a better 3D exaggerated caricature dataset with 531
faces is constructed, with 501 caricatures as the training set
and the left samples as the testing set.

TrainingDetails.Ourmodel is optimized using theAdam
optimizer for 2,000 epochs with a batch size of 4 and a
learning rate of 0.0001. The texture and shape latent space
dimension is 256. Both texture and shape hyper-networks
contain four hyper-network blocks, and each block has an
FC layer and a LeakyReLu activation layer. The hidden units
for the four FC layers are all set to 256. Further, the tex-
ture and shape are constructed with three Siren layers. The
first SIREN layer maps the 3D position and 3D texture to
256-dimensional features. The hidden and last SIREN layers
have 256 hidden feature dimensions. The input 2D image is
sequentially processed by a convolution (Conv) layer with
3 ∗ 3 kernel and output channels of 3, a 4 ∗ 4 max pooling

Fig. 6 Some samples of 3DCaricshop [31] dataset and its variants. (a)
is the 2D images corresponding to the 3DCaricshop dataset, (b) is the
3DCaricshop dataset, and (c) is our dataset

layer, and an FC layer with 52800 hidden units. Both the
shape and texture latent codes are randomly initialized with
normal distribution.

Evaluation protocol. Our work focuses on flexible edit-
ing of exaggerated shapes and texture styles for 3D caricature
faceswith high-quality generation.Wegive the visualizations
of the texture editing and shape exaggeration with extensive
qualitative experiments. At the same time, we provide the
numerical evaluation of the mean position loss, which cal-
culates the shape distance between the ground truth and the
generated 3DECF to demonstrate the impact of the generated
shapes quantitatively.

4.2 Evaluation

TextureModeling.Ournetwork enables high-quality texture
reconstruction in generating 3D caricatures. To demonstrate
its superiority, we compare it with 3D-CariNet [34] and
illustrate the results in Fig. 7. 3D-CariNet [34] is a cutting-
edge work for generating 3D caricature faces with textures,
and its training data is also 3D caricature mesh data. From
Fig. 7, it can be observed that the face images generated
by 3D-CariNet present artifacts, blurring, and lack of eyes
and mouthparts. In contrast, our method can reconstruct the
whole 3D face with high-quality texture details. We attribute
the promising results of ourmethod to the fact that our texture
modeling can learn better texture representation and improve
the matching correspondence between the 3D caricature and
2D face image through back projection.

We engage 20 professionals in animation to score the gen-
eration of quality in Fig. 7, and ask them to choose the best
method regarding texture modeling and caricature exagger-
ation. The highest and lowest scores are set to 10 and 0,
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Fig. 7 Visual comparisonwith 3D-CariNet [34] regarding texturemod-
eling. (a) signifies ground truth. (b) denotes the result generated by
3D-CariNet. (c) is the result generated by our method. Our method can
reconstruct the whole 3D face with a higher-quality texture effect

Table 1 Statistical comparison regarding texture modeling. PTM
denotes percentage about texture modeling and PCE means percent-
age about caricature exaggeration. The best results are denoted in bold
font

Method Average score PTM PCE

3D-CariNet [34] 6.250 0.200 0.300

Ours 8.125 0.800 0.700

respectively. The statistical results are reported in Table 1. It
can be observed that our method has been widely recognized
by experts regarding the three evaluation terms.

Shape Modeling. 3D caricature faces are characterized
by exaggerated facial shapes. To identify the geometric shape
modeling abilities, we visualize the comparisons with deep
deformable [19], DIF-NET [7] in Fig. 8. Comparedwith deep
deformable [19], our method can express more high-fidelity
and natural 3D ECF shapes. In addition, we implement quan-
titative evaluation and compare with the deep deformable.
Experimental results of the mean position loss for the 3D
ECF testing set are reported in Table 2. It can be seen that
our method has the smallest reconstruction error. Compared
to DIF-NET, although DIF-NET could reconstruct the over-
all shape, it ignores important facial details. For example, the
part of the eye, we can not even see the shape of the eye. Since
the DIF-NET is used to express the face shape in the form of
the point cloud, the specific coordinate points corresponding
to the coordinate points of the ground truth cannot be found.
So, we do not make quantitative comparisons.

Similar to the texture modeling, the 20 professionals also
are requested to evaluate deep deformable [19], DIF-NET
[7], and our method in Fig. 8 in view of shape modeling. The
best shape modeling is asked to be selected. We record the

Fig. 8 Visual comparison with deep deformable [19] and DIF-NET [7]
regarding shape modeling. (a) signifies the ground truth. (b) denotes the
result generated by deep deformable. (c) denotes the result generated
by DIF-NET. (d) is the result generated by our method

Table 2 Comparisons with deep deformable [19]. The best results are
denoted in bold font

Method Mean position loss

Deep deformable [19] 0.029

Ours 0.015

Table 3 Statistical comparison regarding shape modeling. The results
are denoted in bold font

Method Average score Percentage

Deep deformable [19] 7.225 0.300

DIF-NET [7] 5.700 0.050

Ours 7.875 0.650

results in Table 3. From Table 3, we can see that our method
is considered to be the best method for shape modeling.

Texture Style Transformation. Since we represent the
textured feature of 3D caricature faces in texture latent
spaces, we can easily transfer the textures of reference 2D
images to target 3D ECF by editing the texture latent space.
We summarize the generation effects of texture style editing
in Fig. 9 and compare our method with 3D-CariNet [34]. 3D-
CariNet requires preparing the data of four style textures in
advance and training the texture encoder offline when per-
forming style transformation. 3D-CariNet can only generate
textured 3D caricatures within four predefined texture styles.
While our work can perform texture editing across character
styles online.Most importantly, ourwork can generate awide
variety of texture styles based on diversified input images,
not limited to four styles. From Fig. 9, we can observe that
our work can handle texture editing for different characters,
flexibly generating a variety of texture styles and preserving
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Fig. 9 Visual comparison with 3D-CariNet [34] regarding diversified
texture style editing. The blue box shows the experiment results of 3D-
CariNet, and the red box shows the experiment results of ourmethod. (a)

is the style of the ground truth picture. (b) is the original style from the
ground truth picture. (c), (d), (e), and (f) are textural styles for editing

shape details under different 3D caricature faces with high
quality and naturalness.

Multi-type Shape Editing. Our method supports multi-
type shape editing: semantic-based editing and point-handle-
based editing. The dataset we used provides semantic labels
for each caricature. Through network structure learning, we
obtain the orientation of each attribute and can directly per-
form semantic editing by manipulating the latent codes.
Regarding point-handle-based editing, our work can perform
online shape editing by generating reasonable deformations
even if the grid points are sparsely located. We demonstrate
the editing performance in Fig. 10. For semantic editing, our
method can realize editing of 3D ECF with varying degrees
through a data-driven editing space for 3D ECF shapes. Our
model can make the input images more smiling or more sad.
We can also edit 3D ECF using the learned latent space for
point-handle-based editing. For the cheek, stretch the two
points sideways after picking a point at each side of the cheek.
For the nose,move the point to the front after selecting a point
on the nose tip. For ears, stretch the two points after picking
a point at each side of the ears.

4.3 Ablation Study

In our framework, we leverage two separate latent spaces
to represent the texture and shape features of 3D caricature
faces. Further, two individual Sirens are utilized to learn the
deformation values of texture and shape. The latent codes

Fig. 10 Visualizations of our method for fine-grained semantic editing
and multi-dimensional point-handle-based editing

of texture and shape can be shared in space. Meanwhile, the
same goes for the deformation spaces of texture and shape.
Nevertheless, we claim that the separate representations of
latent spaces and deformation spaces for texture and shape
can obtain better 3D ECF modeling performance. We imple-
ment ablation studies to validate our network design.
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Fig. 11 Ablation study about whether utilizing separated shape and texture latent codes. (a) is the ground truth. (b) is the reconstructed result using
merged latent codes. (c) is the reconstructed result using separated latent codes

Fig. 12 Ablation study about whether decoupling shape and texture modeling. (a) signifies the ground truth. (b) is the reconstructed result of
merging shape and texture. (c) is the reconstructed result of decoupling shape and texture

The importance of separate latent codes. To verify the
superiority of separate latent codes, we conduct experiments
using merged latent codes to represent caricature texture and
shape. The contrast results of utilizing separated and merged
shape and texture latent codes are exhibited in Fig. 11. We
can observe that merged latent codes result in a lot of tex-
ture errors, such as red and black spots. In contrast, separating
latent codes achieves high-quality modeling performance for
both shape and texture. The possible reason may be that due
to the inconsistency between the spatial distribution of shape
features and texture features, combining the latent codes will
lead to adverse mutual influences for feature learning, result-
ing in the deviationof both shape and texture from theoriginal
feature distributions.

The importance of shape and texture decoupling. We
implement comparison experiments ofmerging or separating
shape and texture siren networks to verify the importance of
decoupling deformation spaces. The generated 3D caricature
faces are illustrated in Fig. 12. It can be summarized from
Fig. 12 that merging texture and shape deformation space
yields considerable texture errors, such as the blue, green,
and black patches.We justify that when integrating the shape

Fig. 13 3D ECF effects with side 2D images as input. (a) is 2D images.
(b) and (c) are 3D results of left and right sides

and texture of the Siren network, the 3D caricature shape and
texture are entangled, leading to the learning of a flawed, not
good enough deformation space. On the contrary, decoupling
shape and texture can effectively perform feature extraction
and editing of shape and texture. In the meantime, we can
also keep the consistency of shape and texture through the
structural topology of 3D caricature faces.

4.4 Limitation

Currently, we only leverage the frontal images to generate 3D
ECF. Since the 3DCaricshop dataset provides only one 2D
image for each character, as shown in Fig. 13, texture infor-
mation of other sides of the generated 3D ECF are missing
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when using non-frontal 2D images. If we have 2D data from
multiple views, we can reconstruct 3D ECF with full texture
through the network. In the future, we will explore using
existing datasets to build parametric ECF with prior knowl-
edge and reconstruct 3D ECF through a 2D image.

5 Conclusion

In this paper, we present a novel deformable framework for
3D ECF modeling and editing. Our work can model 3D
ECF shapes and textures with high fidelity and high defini-
tion. The generated 3D exaggerated caricatures enable shape,
semantic, and point-handle-based editing. At the same time,
our work allows online texture style editing across multiple
caricature characters. Qualitative comparisons with related
works and expert evaluation results demonstrate that our
approach has higher fitting accuracy and more flexible edit-
ing capabilities. Our work can open up more possibilities for
accelerating content creation for emerging applications such
as meta-universes and animation.
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