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Abstract

In recent years, the topic of skeleton-based human action recognition has
attracted significant attention from researchers and practitioners in graphics,
vision, animation, and virtual environments. The most fundamental issue is how
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to learn an effective and accurate representation from spatiotemporal action
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Brook University, Stony Brook, New York, sequences towards improved performance, and this article aims to address the
aforementioned challenge. In particular, we design a novel method of hybrid fea-
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tures’ extraction based on the construction of multistream networks and their
organic fusion. First, we train a convolution neural networks (CNN) model to
learn CNN-based features with the raw skeleton coordinates and their temporal
differences serving as input signals. The attention mechanism is injected into
the CNN model to weigh more effective and important information. Then, we
employ long short-term memory (LSTM) to obtain long-term temporal features
from action sequences. Finally, we generate the hybrid features by fusing the
CNN and LSTM networks, and we classify action types with the hybrid features.
The extensive experiments are performed on several large-scale publically avail-
able databases, and promising results demonstrate the efficacy and effectiveness
of our proposed framework.
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1 | INTRODUCTION

Human action recognition is one of the fundamental topics in computer vision. It has a wide range of applications in
many areas, such as intelligent video surveillance, sport analysis, and human-computer interaction.!* Compared with
RGB images or videos data, the skeleton-based action recognition has quite a few advantages. On one hand, skeleton data
is a high-level abstraction of human actions and is robust against interference of backgrounds. On the other hand, the
data size of skeleton data is extremely small, since it is represented as three-dimensional (3D) coordinates of the major
body joints. The key tasks in skeleton-based action recognition are to extract distinguishable spatial temporal features to
represent human action sequence and to acquire the high recognition accuracy. To deal with these issues, scholars have
done abundant related research. With the successful development of deep learning, the researches have made significant
improvement. However, the problems are not yet fully addressed.
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Some scholars designed hand-crafted features to represent skeleton sequences, such as covariance matrices of joint
trajectories,’ histograms of 3D joint location,® and relative positions of joints.” These methods pay more attention to the
spatial information. They capture the temporal dynamics through hierarchical structures. To extract more informative
temporal dynamics, the recurrent neural networks (RNNs) are adopted to action recognition.®1° The long short-term
memory (LSTM) based on RNNs can model the long-term contextual information of temporal sequences well. However,
RNN-based model tends to emphasize the temporal information.!?

Considering the convolution neural networks (CNN) model is effective for classify images, increasing number of
researchers use CNN to learn spatiotemporal features for skeleton sequences. Some approaches transform skeleton
sequences into images, then they are fed into CNN model for action recognition.'?!3 Reference 14 propose the spatial
temporal graph convolutional networks (ST-GCN) for human action recognition by extending graph neural networks to
a spatial-temporal graph model. Reference 15 present a cooccurence feature learning framework based on CNN model.
The cooccurence features are learned gradually from point-level features to global features. However, the above research
learn global features containing limited local information of skeleton sequences. Moreover, quite a few human actions
have characteristic frequency, such as shaking hands, clapping, but these typical methods ignore periodic patterns in the
frequency domain.

To overcome the limitations and extract more discriminative information for skeleton-based action sequence, we pro-
pose a novel method, as shown in Figure 1, which uses hybrid features to recognize human actions. The hybrid features
consist of CNN features and LSTM features. We design the CNN model based on the two-stream framework,'® which
contains the raw skeleton position and the temporal difference. After convolution operation for each stream, we aggre-
gate the two outputs to combined feature map. Then the LSTM model is employed to get the long-term temporal features.
Since each type of features describes slightly different aspects of the sequence, we fuse various features to acquire more
discriminative expression of action sequences. Finally, we achieve the hybrid features by confusing the CNN features and
LSTM features, and perform action classification using hybrid features.

The major contributions of this work include:

« We proposed a multistream framework that integrates CNN-based features and LSTM-based features. It demonstrates
that the hybrid features are more efficient in representation to receive improved performance.

« The attention mechanism is introduced to the CNN model to reallocate the feature maps by computing associations
among elements. The improved CNN model can effectively learn more discriminative features.
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FIGURE 1 The framework of our proposed method
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2 | RELATED WORK
2.1 | Action recognition methods

Early approaches focus on the hand-crafted features to represent the human body for recognizing human action. Refer-
ence 17 employs the relative positions of the joints to characterize position feature, motion feature, and overall dynamics
feature. Principal component analysis is applied to obtain EigenJoints representation. Reference 17 proposes an action-
let ensemble model. The pairwise relative positions of each joint with other joints are computed to represent the position
features, and Fourier temporal pyramid is used to represent the temporal dynamics. Reference 18 uses the rotations and
translations between various body parts to represent geometric relationships, and the human action sequence is modeled
as a curve in the Lie group. However, hand-crafted features can barely effectively represent spatiotemporal information
of action sequences.

With the successful development of deep learning-based methods in image recognition and natural language pro-
cessing (NLP), more and more literatures learn skeleton representations by adopting deep learning methods and achieve
improved performance. There are mainly three categories: CNN-based methods, RNN-based methods, and GCN-based
methods.

RNNSs and LSTM networks are used to model temporal information of skeleton sequences.®1%1° Reference 8 divides
the skeleton joints into five sets corresponding to five body parts. Then, the five sets are fed into five LSTMs. Reference
9 proposes a spatiotemporal LSTM framework to model the dynamics and dependency relations in both temporal and
spatial domains. CNN-based methods represent the skeleton sequence as a pseudo-image, and then feed it into a CNN to
recognize the action class just like image classification.!?1315 In Reference 13, the skeleton sequences are represented as
three gray-scale images encoded from raw data. Reference 15 proposes an end-to-end convolutional cooccurrence features
learning framework, which uses CNN to learn point-level features for each joint and then aggregate these features from
all joints to obtain cooccurrence features hierarchically. The GCN-based methods model the skeleton as a graph with
joints and bones as vertexes and edges separately.!20-22

2.2 | Attention mechanism

The attention mechanism in deep learning can ignore irrelevant information and focus on important information. In
action recognition field, researchers have utilized attention to learn more abundant information feature by focusing on a
few joints, parts, and frames. To select discriminative spatial information, the attention mechanism is employed to focus
on key joints.?* Reference 19 proposes a spatiotemporal attention model to allocate different attention weights to joints
and frames. Reference 24 adopts a residual frequency attention block in the frequency domain to focus on discriminative
patterns.

3 | PROPOSED METHOD
3.1 | CNN-based features learning
The CNN model used in our frame work can be described as Figure 1. The raw human skeleton data is a sequence of
frames. Each of frames contains a set of joint 3D coordinates. Besides the joint coordinate location, the differences of joints
contain temporal movements in a sequence. Given a skeleton sequence S, we calculate the Euclidean distance between
same joints in adjacent frames. The skeleton sequence in frame ¢ can be represented:

S ={J, ..., T}, 1)
where N is the number of joint and J = (x, y, z) represents a joint in a frame. The skeleton motion is defined as:

M[ - S[+1 _ S[. (2)

We feed the joints coordinates S and the skeleton motion M into the network simultaneously (Figure 1).
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We represent a skeleton sequence X asa T X N X C tensor, where C, T, N denote the coordinate dimension, the number
of frames, and the number of joints. As shown in Figure 1, we feed two types of input into the CNN model. Given a
skeleton sequence tensor X, we obtain a skeleton motion tensor M using Equation (2). We design two branches to accept
the skeleton sequence X and skeleton motion M. Both two branches have the same architecture and different parameters.
We fuse two feature maps by concatenation along the channels.

The convolution operation enables interaction between channels of feature map, where features are aggregated from
all input channels. Accordingly, we introduce transpose operation into the network. Given a feature maps X with shape
(C, T, N), we transpose it and the feature maps get new shape (C, N, T), so the frames is moved to channels. As shown in
Figure 1, we adopt 1 X 1 and 3 X 1 kernels in conv1 and conv2, respectively. The kernel size of other convolution layers is
equal to 3 x 3. Before conv4 and conv5, we attach two attention layers, which reallocate weights of feature maps. The input
and output feature maps have in common shape by the attention layer. After that, the feature maps can contain more
temporal information under subsequent convolution layers and fully connected layers. Then the CNN-based features are
obtained.

3.2 | LSTM-based features learning

Generally, LSTM networks have superior performance in NLP field, such as speech recognition, text categorization,
machine translation, and so forth. Considering LSTM can model the long-term contextual information of temporal
sequences well, we adopt the two-layer LSTM model to obtain LSTM-based features. For each element in the input
sequence, each layer computes the following function:

iy = c(W;ix; + by + Wiih_1) + by), 3)

f; = o(Wirx; + byy + Wish_1) + byy), 4)

c; =f; % cyq) + i * tanh(Wex + Wehe g + by), (5
0; = c(WeX; + Worh_1y + Woecim1 + by), (6)

h; = otanh(c,), (7

where o(-) is the sigmoid function, and i;, f;, ¢;, 0; are the input, forget, cell, and output gates, respectively, and * indicates
element-wise product. x, W, h, and b are input vector, weight matrices, hidden state vector, and bias vector, respectively.
The structure of LSTM unit is shown in Figure 2.

We process two types tensor: the skeleton sequence X and the skeleton motion M as inputs in Section 3.1. Conse-
quently, they are fed into two LSTM networks branches shared the same architecture. As shown in Figure 1, through the
LSTM networks, we obtain two LSTM-based features, which are concatenated for next stage. As shown in Figure 2, x; is
the input of LSTM. There are the configurations of LSTM model for different datasets mentioned in Section 4.2.

3.3 | Attention module

In this work, the attention module is employed in CNN model to learning spatial features. We are inspired by self-attention
proposed in Reference 25, which imported the self-attention mechanism into generative adversarial networks framework.
The framework generates high-quality images for this reason the self-attention module is effective in modeling long-range
dependencies.

We utilize the self-attention module to our framework for skeleton-based human action recognition. Given an action
sequence, the significance of joints and frames are diverse. To obtain discriminative representation, we reassign weights of
feature maps by building associations among elements with the attention tighter mechanism. Consequently, the learned
features contain dependencies between global features.
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FIGURE 2 The LSTM module and the structure of LSTM unit. LSTM, depth
long short-term memory
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FIGURE 3 The self-attention module

As shown in Figure 3, given a skeleton action sequence, we obtain the feature maps which are the output of convo-
lution layers. Then we will obtain self-attention feature maps with the same shape (C x H X W) by the attention module.
We feed the input feature maps into a convolution layers and generate three new feature maps query, key, and value,
respectively. Then we perform matrix multiplication between query and key with reshape and transpose operations. A
softmax layer is employed to obtain the attention maps. Afterwards, we perform another matrix multiplication between
value and attention maps to obtain attention feature maps. Finally, we update the original feature maps by element-wise
sum operation and obtain the self-attention feature maps.

3.4 | Proposed network architecture

As shown in Figure 1, the proposed architecture consists of multiple modules. CNN-based feature and LSTM features
are obtained through CNN and LSTM models, respectively. Then we concatenate them to receive the hybrid features.
Afterwards, we use one fully connected layer to represent a skeleton sequence. A softmax layer is added at the end for
class prediction. For the recognition task, a softmax function is used to normalize the output of network. The architecture
has different structures according to the type of the process such as training and testing.



60f11 Wl LEY CHEN ET AL.

Algorithm 1. The proposed architecture for training

Input: The skeleton action sequence dataset.

Output: The trained model.

: Initializing the network parameters.

Preprocessing the input data to position tensor X and motion tensor M.
Training the CNN model with X and M.

Training the LSTM model with X and M.

Extracting the CNN features and LSTM features.

Training the entire model.

Looping until convergence or reach given epochs.

Return the trained model of our architecture.

[ A R e

In the training process, there are three models needed be trained, such as CNN, LSTM, and the hybrid models. The
training procedure is described in Algorithm 1. First, the submodels are trained with a softmax function as loss function
separately. After the models have converged, the softmax layers are discarded into two submodels. We train the entire
architecture with the trained parameters in CNN and LSTM models. As the same as submodels, the entire architecture
use a softmax function as loss function. The probability that a skeleton sequence X belongs to the ith class is

P(C|X) = al ,i=1,2,...,C, )
.C e<i
=1
where 0=(01,0,, ... , O.)T is the output of the network, C is the number of classes.

4 | EXPERIMENTS AND EVALUATIONS

We evaluate the proposed method on two large-scale datasets, that is, the NTU RGB+ D0 and the Skeleton-Kinetics.!*
Both of these datasets have been widely used in previous work for skeleton-based action recognition. We work on the two
datasets to validate the approach and make a comparison with the state-of-the-art methods.

4.1 | Datasets
411 | NTURGB+D

NTU RGB+D is currently the most widely used skeleton-based action recognition dataset. It contains 56,000 skeleton
action sequences, each annotated an action. There are 60 classes including single-actor action, for example, jumping up
and two-actors action, for example, handshaking. We follow the benchmark evaluations in the original article,'° that is,
crosssubject (CS) and crossview (CV). In the CS evaluation, the training set contains 40,230 sequences, and validation set
contains 16,560 sequences. Each frame contains 25 joints and shown in Figure 4. The corresponding labels of the joints
are shown in Figure 4. In the CV evaluation, the training set contains 37,920 sequences, and the validation set contains
18,960 sequences. Top-1 accuracy is reported on both the two benchmarks.

4.1.2 | Skeleton-Kinetics

The Skeleton-Kinetics is based on Kinetics human action dataset?® without skeleton data collected from YouTube.
There are 400 classes actions in the dataset. The Skeleton-Kinetics'* are extracted employing the open source toolbox
OpenPose.?” As shown in Figure 5, the toolbox can estimate 18 joints for each person with two-dimensional coordinates
(X,Y) and confidence score C. We represent each joint with a tuple of (X,Y,C). In one frame, only the top-2 persons are
selected by the joint confidence. The released data pad every clip to 300 frames. A skeleton sequence with T frames can be
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FIGURE 4 Illustration of the NTU-RGBD dataset

The labels of the joints:

1-base of the spine
2-middle of the spine
3-neck

4-head

5-left shoulder
6-left elbow

7-left wrist

8-left hand

9-right shoulder
10-right elbow
11-right wrist
12-right hand
13-left hip

14-left knee

15-left ankle

16-left foot
17-right hip
18-right knee
19-right ankle
20-right foot

21-spine

22-tip of the left hand
: % 23-left thumb
24-tip of the right hand

25-right thumb

FIGURE 5 Illustration of the Skeleton-Kinetics dataset
The labels of the joints:

0-nose

1-neck

2-right shoulder
3-right elbow
4-right wrist
5-left shoulder
6-left elbow
7-left wrist
8-right hip
9-right knee
10-right ankle
11-left hip
12-left knee
13-left ankle
14-right eye
15-left eye
16-right ear
17-left ear

represented as a tensor with dimension of (18 x 3 x T'). Both Top-1 and Top-5 classification accuracies are reported as the
recommendation. The dataset provides a training set of 240,000 clips and a validation set of 20,000.

4.2 | Implementation details

Our framework is implemented on the Pytorch and trained with the same bath size (32), training epochs (150). The Adam
is applied as the optimization algorithm for the network. For the NTU RGB+D dataset, if there are two persons in the
sequences, we choose the person with higher value as the main subject. The skeleton sequences are normalized to a fixed
length (64) using bilinear interpolation. The learning rate is initialized to 0.0001 and exponentially decayed every 1K steps
with a rate of 0.99. In the LSTM model, the number of inputs x is 64. The number of hidden units of LSTM is 200. For the
Skeleton-Kinetics, the LSTM has 300 inputs and 200 hidden units.

4.3 | Ablation study

In this section, we examine the effectiveness of the proposed hybrid features learning architecture on NTU RGB+D dataset
with the benchmark of CS and CV. The results of our method are reported in Table 1. First two rows show the accuracies
of previous approaches, which are CNN-based method and LSTM-based method, respectively. Here, we compare with
four baselines, which utilize different types of features to recognize action sequences as follows.
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TABLE 1 Ablation study on the NTU RGB+D dataset

Methods CS (%) CV (%)
P-LSTM!? 62.9 70.3
HCN?'® 86.5 91.1
Ours (CNN) 85.6 90.2
Ours (LSTM) 65.2 73.6
Ours (CNN-ATT) 87.1 92.3
Ours (CNN-ATT-LSTM) 88.0 94.5

Note: The values in boldface mean our hybrid model achieves the highest

accuracies in ablation study. Abbreviations: CNN, convolution neural
networks; CS, crosssubject; CV, crossview; LSTM, long short-term memory.

FIGURE 6 Confusion matrix comparison on the NTU
RGB+D dataset

« CNN: main CNN network without attention designs.

« LSTM: main LSTM network.

« CNN-ATT: CNN model with attention module.

« CNN-ATT-LSTM: the framework of CNN model with attention and LSTM.

First, we evaluate our CNN method and LSTM method. Table 1 shows validity of baselines with CNN and LSTM
models. At the next step, we evaluate CNN-ATT model. Compared with CNN model showed in the third row, CNN-ATT
improves the accuracies 1.5% and 2.1% on CS and CV, respectively. At the last step, we evaluate the proposed hybrid model
(CNN-ATT-LSTM). As shown in Table 1, the hybrid model achieves the highest accuracies 88.0% in CS, and 94.5% in CV
evaluations. The confusion matrix on the NTU RGB+D dataset is shown in Figure 6.

4.4 | Comparisons and discussion

To evaluate the performance of our method, we compare it with other skeleton-based action recognition approaches. The
compared methods include hand-crafted methods,?® CNN-based methods,'® LSTM-based methods,'®?® and GCN-based
methods'#?%21.30 on NTU RGB+D and Skeleton-Kinetics datasets. Tables 2 and 3 show the results on these two datasets,
respectively. The performance of deep learning-based methods is better than hand-crafted based methods. As shown in
Table 2, our method outperforms hand-crafted based, CNN-based and LSTM-based methods. The result is similar on
Skeleton-Kinetics dataset (Table 3). Nevertheless, compared with the GCN-based methods, the results of our model is
worse on NTU RGB+D and Skeleton-Kinetics datasets. In the GCN-based methods, the human skeleton action sequence is
represented as spatial temporal graph instead of pseudo-image. Intuitively, the human skeleton is more like a graph, which
joints are represented as vertices and bones are represented as edges. These works have combined the joint information
and bone information together for skeleton-based action recognition. The spatial and temporal features are obtained
simultaneously in these methods.
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TABLE 2 Performance comparison on the NTU RGB+D dataset

Methods CS (%) CV (%)
Joint?8 60.2 65.2
P-LSTM10 62.9 70.3
HCN? 86.5 91.1
VA-LSTM% 79.2 87.7
ST-GCN** 81.5 88.3
2S-AGCN?3? 88.5 95.1
GCN-NAS?! 89.4 95.7
DGNN?° 89.9 96.1
Ours 88.0 94.5

Abbreviations: CS, crosssubject; CV, crossview; LSTM, long
short-term memory; ST-GCN, spatial temporal graph
convolutional networks.

TABLE 3 Performance comparison on the Skeleton-Kinetics dataset

Methods Top-1 (%) Top-5 (%)
P-LSTM10 16.4 35.3
ST-GCN'# 30.7 52.8
AS-GCN?% 34.8 56.5
2S-AGCN?3? 35.1 57.1
DGNNZ 36.9 59.6
GCN-NAS?! 37.1 60.1
Ours 30.2 52.4

Abbreviations: LSTM, long short-term memory; ST-GCN,
spatial temporal graph convolutional networks.

In our work, we merely consider the information of joints without bones. In spite of the spatial-temporal features we
obtain, the features have less information than the features the GCN-based methods obtain. As a result, we report lower
recognition accuracies on two datasets, shown as Tables 2 and 3. Nevertheless, from comparison results, our method is an
effective strategy for recognizing human action based on skeleton. The key contribution of our method is coupling differ-
ent types of features. The model learns discriminative hybrid features with two submodels. In the CNN model, we employ
attentional module to reweighs the convolution feature maps. The new feature maps ignore irrelevant information. More-
over, we obtain the temporal features by LSTM model. Then we acquire hybrid features by concatenating two features.
The experiment results demonstrate that the hybrid features are high-efficiency representation of skeleton sequence with
abundant spatial and temporal information. In Our work, the strategy is fusion and the comparisons are like this. More
comprehensive comparisons should be carried out in the near future.

5 | CONCLUSION

In this work, we present a hybrid features learning framework for skeleton-based action recognition. The hybrid fea-
tures consist of CNN-based and LSTM-based features learning by CNN model and LSTM model. Specifically, the skeleton
sequence X and the skeleton motion M are fed into CNN networks and LSTM networks simultaneously. In addition, we
introduce attention module to the CNN layers. Afterwards, we obtain the hybrid features by concatenating two features.
We evaluate our method on two large-scale datasets: NTU RGB+D and Skeleton-Kinetics. From the experimental results
we illustrate that the hybrid features learning framework is an effective strategy. In the future, we will continue combin-
ing different types of features and consider the information of bones in skeleton sequences simultaneously. In addition,
exploration is recommended into how to extend human action to other scenes, such as predicting people’s emotion by
coupling human action and facial expression.
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