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A B S T R A C T

Despite the significant progress for monocular 3D human pose estimation, it still faces challenges due to self-
occlusions and depth ambiguities. To tackle those issues, we propose a novel Dynamic Graph Transformer
(DGFormer) to exploit local and global relationships between skeleton joints for pose estimation. Specifically,
the proposed DGFormer mainly consists of three core modules: Transformer Encoder (TE), immobile Graph
Convolutional Network (GCN), and dynamic GCN. TE module leverages the self-attention mechanism to learn
the complex global relationships among skeleton joints. The immobile GCN is responsible for capturing
the local physical connections between human joints, while the dynamic GCN concentrates on learning
the sparse dynamic K-nearest neighbor interactions according to different action poses. By building the
adequately global long-range, local physical, and sparse dynamic dependencies of human joints, experiments
on Human3.6M and MPI-INF-3DHP datasets demonstrate that our method can predict 3D pose with lower
errors outperforming the recent state-of-the-art image-based performance. Furthermore, experiments on in-
the-wild videos demonstrate the impressive generalization abilities of our method. Code will be available at:
https://github.com/czmmmm/DGFormer.
1. Introduction

3D human pose estimation (3D-HPE) has become an increasing re-
search hotspot in the computer vision and graphics community because
of its wide range of applications in video surveillance [1], human–
robot interaction [2], motion analysis [3], etc. The goal is to estimate
the 3D coordinates of human body joints. In spite of the fact that
3D-HPE has achieved considerable development [4,5] thanks to the
powerful learning capabilities of deep learning, there are still chal-
lenges such as self-occlusions and depth ambiguities where multiple 3D
poses correspond to the single 2D projection.

To address the above difficulties, current works can be split into
two categories: (1) direct estimation and (2) 2D-to-3D lifting. Direct
estimation methods [3,6] estimate 3D poses from 2D images directly
via convolutional neural networks (CNN). However, the convolutional
operations focus on local features, and the direct regression without
intermediate process makes the computation seriously heavy. Hence,
several approaches [7,8] attempt to adopt the 2D-to-3D lifting manner,
which detects 2D keypoints using 2D pose detector [9] firstly and then
lifts them to 3D with the popular Fully Connected Network (FCN). The
FCN-based works capture the global relationships by flattening all joints
while neglecting the spatial structure of the human skeleton. In fact,
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both the CNN-based and FCN-based methods hardly model complex
poses with limited representational capacities of graph-structured data.

Graph Convolutional Network (GCN) is a promising approach to
process graph-structured data. The human skeleton can be regarded as
a graph with physically connected joints. To incorporate the prior, some
researches [10,11] utilize GCN to explore local physical relationships
for pose estimation. SemGCN [10] further introduces an extra non-local
module to capture global relationships. However, existing GCN-based
methods are restricted by the receptive field of the fixed physical
affinity with natural connections. For diverse human actions, dynamic
long-range interactions between joints also provide informative clues.
For instance, as shown in Fig. 1, the joints of two arms of the Greeting
behavior are closely related, but there is no natural connection between
them. Therefore, it will facilitate performance to simultaneously con-
sider the local physical connections and sparse long-range contextual
information between joints.

Recently, the transformer [12] has dominated natural language
processing (NLP) because of its powerful long-range modeling abilities.
By leveraging the self-attention mechanism, the transformer model is
able to establish global dependencies among different input tokens.
Inspired by this, recent works [13,14] utilize transformer to implement
3D-HPE. These methods make an effort to explore the complex rela-
tionships between skeleton joints. Obvious performance improvements
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Fig. 1. Graph representation of human skeleton for Greeting action. (a) The original
image. (b) The gray circle denotes the physical connections between left wrist and
elbow joints. (c) The red circle refers to dynamic connections between left wrist and
right wrist.

have been achieved by learning the global context information for
updating and representation of joints. However, only applying the self-
attention mechanism will weaken the graph structure expression of the
human skeleton, which is usually used as a strong prior to estimating
unusual postures. Considering this, some methods [15,16] attempt to
integrate transformer and graph structure information via stacking GCN
layers and transformer encoder. Nonetheless, they only consider the
physical connections of human skeleton joints.

To address the above issues, we propose the Dynamic Graph Trans-
former (DGFormer) to learn the dynamic local and global relationships
for 3D-HPE. The proposed DGFormer consists of a Transformer Encoder
(TE), an immobile GCN module, and a dynamic GCN module, which
are respectively responsible for constructing global long-range depen-
dencies, local physical connections, and sparse dynamic relationships
between skeleton joints. Particularly, the dynamic GCN is able to han-
dle the pose-dependent correlations of joints. We evaluate the proposed
DGFormer on available widely used datasets, i.e., Human3.6M [17] and
MPI-INF-3DHP [18]. Experimental results demonstrate that our DG-
Former achieves state-of-the-art performance. The main contributions
of our method are listed as follows:

• We propose a novel framework, called Dynamic Graph Trans-
former (DGFormer), for 3D human pose estimation. Our method
effectively takes advantage of the global and local dynamic rela-
tionships among human joints for performance improvements.

• Considering the prior information of the human skeleton, we
formulate a new GCN block consisting of an immobile GCN and a
dynamic GCN, which capture the multi-scale physical and sparse
dynamic relationships of skeleton joints for diversified action
poses, respectively.

• Experiments on two challenging datasets: Human3.6M and MPI-
INF-3DHP, demonstrate that our method achieves state-of-the-
art results compared with image-based methods. Our method
has impressive generalization abilities through experiments on
in-the-wild videos.

2. Related work

In this section, we first review the advanced 2D and 3D HPE meth-
ods. Next, we introduce the progressive GCN and vision transformer
that are related to our work.

2.1. 2D human pose estimation

2D-HPE is a fundamental problem in computer vision, which detects
and localizes 2D keypoints from 2D images or videos. With the progres-
2

sive development of deep learning, 2D-HPE has achieved impressive
improvements by utilizing CNNs. For example, the widely used Open-
Pose [19] is a real-time multiple-person pose detection approach that
leverages the Part Affinity Fields (PAFs) to associate body parts with
individuals in the image. CPN [9] presents a cascaded pyramid network
with the globalNet localizing the relative simple keypoints, and the Re-
fineNet aiming to handle the occluded and hard keypoints. HRNet [20]
claims that high-resolution features are essential for position-sensitive
vision tasks. Therefore, it maintains high-resolution representations
throughout the whole process for estimating 2D human pose. In this pa-
per, we concentrate on estimating 3D pose from 2D keypoints to reduce
complexity, and the 2D pose can be obtained by existing state-of-the-art
2D-HPE methods in advance.

2.2. 3D human pose estimation

Recently, deep neural networks have become the prevalent technol-
ogy for 3D-HPE. Currently, existing methods can be broadly classified
into two categories: direct estimation [6,21] and 2D-to-3D lifting [5,
7]. The former is end-to-end optimized, directly estimating 3D joint
coordinates from original images. However, the computation is quite
expensive, and models are hungry for labeled training samples. Thanks
to the excellent performance of 2D human pose estimation [9,20],
2D-to-3D lifting methods receive increasing attention. For instance,
Martinez et al. [7] design a simple and effective fully-connected resid-
ual network to estimate 3D pose based on 2D keypoints from a single
frame. To maintain temporal consistency, works in [4,22] establish
spatial–temporal correlations for input sequences. The 2D-to-3D lifting
schema greatly reduces the task difficulty, and it can also utilize a
large amount of available 2D pose estimation datasets. Therefore, in
this paper, we adopt the 2D-to-3D lifting to conduct 3D-HPE.

2.3. Graph convolutional networks

GCNs are widely used to process graph-structured data. The human
skeleton owns natural connections between joints, which is especially
suitable for learning by GCNs. Numerous GCN-based variations have
been proposed and devoted to addressing skeleton-based vision prob-
lems for the past few years. For instance, inspired by graph Laplacian,
Kipf and welling [23] formulate graph convolutional networks by the
Chebyshev approximation. ST-GCN [24] is the first method to adopt
GCN for skeleton-based action recognition. Later, GCN becomes the
prevailing technology in various fields. Zhong et al. [25] propose the
Gating-Adjacency GCN network (GAGCN) to predict future motion
movements given historical motion sequences. Korban et al. [26] utilize
the graph structure to represent skeletal, posture, clothing, and facial
information for age estimation. In 3D-HPE, SemGCN [10] leverages a
semantic GCN to learn local and global contextual information. GAST-
Net [27] resorts graph attention mechanisms to acquire kinematic
constraints of the human skeleton by modeling local and global spatial
information. GraphSH [11] formulates graph stacked hourglass net-
works to capture multi-scale and multi-level features on skeleton data.
Nevertheless, the above methods learn skeleton representation using
fixed physical connections. In contrast, we present a novel GCN block
consisting of an immobile GCN and a dynamic GCN to learn high-order
and dynamic dependencies with fixed and dynamic affinities between
skeleton joints.

2.4. Vision transformer

Transformer [12] is originally proposed for natural language pro-
cessing. It owns powerful global context modeling abilities because
of the self-attention mechanism. Recently, several works utilize trans-
former for human pose estimation. For instance, PoseFormer [28]
is a purely transformer-based approach for 3D-HPE in videos with
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Fig. 2. (a) Overview of the proposed Dynamic Graph Transformer (DGFormer). (b) Transformer Encoder module. (c) Immobile GCN module. (d) Dynamic GCN module.
seq2frame solution. MixSTE [14] adopts the seq2seq solution to alter-
nately model spatial correlations of joints and temporal dependencies
among frames. MHFormer [13] learns spatio-temporal representations
of multiple pose hypotheses to estimate 3D poses. These approaches
estimate the 3D poses from video sequences. In addition, some works
combine GCN and transformer to learn expressive features for structural
data. Graphormer [29] explores three levels of graph encoding to
enhance transformer modeling abilities. GPS [30] builds a common
foundation for graph transformer that incorporates structural encodings
with local message passing and global attention. In this paper, we
focus on estimating 3D poses from a single image and incorporating
the transformer with GCN to capture powerful and comprehensive
relationships for skeleton joints.

3. Method

3.1. Preliminaries

In this work, we leverage the benefits of GCN and transformer for
3D-HPE. We first give a brief description of graph convolution opera-
tion (GCN) and the essential components of the transformer, including
MSA (Multi-head Self-Attention) and FFN (Feed Forward Network).

GCN. Since the human skeleton is a natural graph structure, and it
can be represented as 𝐺 = (𝑉 ,𝐸), where 𝑉 and 𝐸 are the node and edge
sets of graph 𝐺. The graph adjacency matrix with 𝐽 skeleton joints is
denoted as 𝐀 ∈ R𝐽×𝐽 . Assuming the latent representation of an input
pose data in layer 𝑙 is expressed as 𝐗(𝑙) ∈ R𝐽×𝑑 , where 𝑑 refers to the
embedding dimension. The graph convolution operation for the human
skeleton can be represented as follows:

𝐗(𝑙+1) = 𝜎
(

𝐃̃− 1
2 𝐀̃𝐃̃− 1

2 𝐗(𝑙)Θ
)

, (1)

where 𝜎(⋅) refers to the activation function, Θ ∈ R𝑑×𝑑 denotes a
learnable weight matrix, 𝐀̃ = 𝐀+𝐈, 𝐃̃ is the diagonal node degree matrix
of 𝐀̃, and 𝐈 refers to the identity matrix.

MSA. The transformer can capture global long-range relationships,
benefiting from the multi-head self-attention module. Following the
standard procedures, the input 𝐗(𝑙) ∈ R𝑛×𝑑 is first mapped into 𝐐 ∈
R𝑛×𝑑 , 𝐊 ∈ R𝑛×𝑑 , and 𝐕 ∈ R𝑛×𝑑 with three linear layers, where 𝑛 is the
token number and 𝑑 is the embedding dimension. We split the 𝐐, 𝐊,
and 𝐕 for ℎ heads, then calculate the scaled dot-product attention for
head 𝑖:

Attention(𝐐𝑖,𝐊𝑖,𝐕𝑖) = sof tmax

(

𝐐𝑖𝐊𝑇
𝑖

√

𝑑𝑘

)

𝐕𝑖. (2)

where 𝐐𝑖 ∈ R𝑛×𝑑𝑘 , 𝐊𝑖 ∈ R𝑛×𝑑𝑘 and 𝐕𝑖 ∈ R𝑛×𝑑𝑘 are the subsets of 𝐐, 𝐊
and 𝐕 for head 𝑖, and 𝑑 = 𝑑∕ℎ. The ℎ heads perform self-attention in
3

𝑘

parallel. We concatenate the outputs of ℎ attention heads to obtain the
updated data. The whole procedures can be formulated as:

MSA(𝐗(𝑙)) = Concat(𝐇1,𝐇2,… ,𝐇ℎ)𝐖𝑜, (3)

𝐇𝑖 = Attention(𝐐𝑖,𝐊𝑖,𝐕𝑖), 𝑖 ∈ [1,… , ℎ], (4)

where 𝐖𝑜 ∈ R𝑑×𝑑 is a parameter matrix that linearly transforms the
outputs of all heads.

FFN. The FFN is applied after MSA with two linear layers for feature
transformation and increase non-linearity. The formula is as follows:

FFN(𝐗(𝑙)) = 𝜎(𝐗(𝑙)𝐖1 + 𝐛1)𝐖2 + 𝐛2, (5)

where 𝐖1 ∈ R𝑑×𝑑𝑚 and 𝐖2 ∈ R𝑑𝑚×𝑑 are weights of two linear layers
respectively, and 𝐛1 and 𝐛2 are the bias terms.

3.2. Overview of the network

We adopt the 2D-to-3D lifting pattern for 3D human pose estima-
tion. Given an input image, we first utilize the CPN detector [9] to
obtain the 2D keypoints in advance. We illustrate the whole framework
in Fig. 2. The proposed DGFormer mainly consists of the transformer
encoder, immobile GCN, and dynamic GCN modules. We leverage the
transformer encoder to learn global long-range context-dependency
information of joints. To capture multi-scale local correlations of joints,
the immobile GCN is formulated with the Chebyshev GCN [31]. As a
result, the immobile GCN contains implicit higher-order information
for extracting complex physical interactions among joints. The dynamic
GCN is inspired by [32], which can adaptively integrate dynamic sparse
contextual information of K-nearest neighbor joints according to differ-
ent input poses. Although works in [16,33] combine the transformer
and GCN to estimate the 3D poses, as well. However, both two methods
do not consider the dynamic pose variations.

3.3. Transformer encoder

We advocate the transformer to learn long-range spatial correlations
between joints. As shown in Fig. 2(b), given a 2D pose 𝐗 ∈ R𝐽×2 with
𝐽 joints, similar to NLP [12], each joint is regarded as a token. We
map the 2D coordinates of each joint into a latent space through a
linear transformation 𝐖 ∈ R2×𝑑 . At the same time, a learnable spatial
positional embedding 𝐄𝑝 ∈ R𝐽×𝑑 is added to the latent representation
of 𝐗 to maintain spatial information. The formula is as follows:

𝐗(0) = 𝐗𝐖 + 𝐄𝑝. (6)

𝐗(0) will be later fed into the transformer encoder, which can update
the feature of each joint through integrating information from all joints.
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The complete process of the transformer encoder can be formulated as
follows:
𝐗′(𝑙) = 𝐗(𝑙−1) +MSA(LN(𝐗(𝑙−1))),

𝐗(𝑙) = 𝐗′(𝑙) +MLP(LN(𝐗′(𝑙))),
(7)

where LN(⋅) denotes the layer normalization operator, 𝑙 ∈ [1,… , 𝐿]
is the index of layers, and 𝐗(𝑙) ∈ R𝐽×𝑑 signifies the output of the
transformer encoder for layer 𝑙. 𝐗(𝑙) will be later sent to the GCN block
to reinforce local context information from both immobile GCN and
dynamic GCN.

3.4. GCN block

The GCN Block in our network consists of an immobile GCN and a
dynamic GCN, respectively responsible for capturing the natural phys-
ical connections and the sparse dynamic interactions. The two terms
facilitate our method achieving noticeable performance improvements.

Immobile GCN. The immobile GCN in our network concentrates
on leveraging the natural physical connection priors to address 3D
pose estimation challenges. To capture multi-scale high-order context
information, we employ Chebyshev polynomial as the convolutional
kernel. We adopt the fixed adjacency matrix 𝐀 ∈ R𝐽×𝐽 defined by
physical connections of human skeleton to represent the edge between
joint 𝑖 and 𝑗:

𝐀(𝑖, 𝑗) =
{

1, 𝑖 and 𝑗 are connected in human skeleton,
0, otherwise. (8)

The Chebyshev graph convolution operation can be formulated as
follows:

𝐗(𝑙+1) = 𝜎

(𝑀−1
∑

𝑚=0
𝐓𝑚(𝐋̃)𝐗(𝑙)Θ𝑚

)

, (9)

where 𝐓𝑚(⋅) denotes the Chebyshev polynomial of degree 𝑚 evaluated
with the normalized Laplacian 𝐋̃ = 2𝐋∕𝜆max − 𝐈 ∈ R𝐽×𝐽 , and 𝐋 =
𝐈− 𝐃̃− 1

2 𝐀̃𝐃̃− 1
2 . 𝜆max is the max eigenvalue of 𝐋, 𝐈 ∈ R𝐽×𝐽 is the identity

matrix, Θ𝑚 is a learnable parameter. The Chebyshev polynomial can
be computed by the stable recurrence relation as follows:

𝐓0(𝐋̃) = 𝐈,
𝐓1(𝐋̃) = 𝐋̃,
𝐓𝑚(𝐋̃) = 2𝐋̃𝐓𝑚−1(𝐋̃) − 𝐓𝑚−2(𝐋̃).

(10)

Compared with the vanilla GCN, the input 𝐗 can integrate the
features of 𝑚 order neighbors for each joint. It should be noted that 𝐀 is
a fixed graph affinity representation based on physical connections of
the human skeleton. However, the fixed affinity cannot establish non-
physical connections for action poses that joints have high correlations
but locate far away.

Dynamic GCN. To address the shortcomings of the immobile GCN,
which only considers the physical connections of the human skeleton,
we introduce the dynamic GCN. It aims to exploit the potential sparse
long-range non-physical connections. Inspired by [32], we measure the
correlation between joints by their distance, which can be calculated
as:

𝑅(𝐱𝑖, 𝐱𝑗 ) = Dist(𝐱𝑖, 𝐱𝑗 ), (11)

where Dist(⋅) is the distance between joint 𝐱𝑖 and 𝐱𝑗 in feature space.
We adopt the Euclidean distance as the measure. Specifically, for each
joint 𝐱𝑖, we calculate its 𝑘 nearest joints 𝛺𝑖, formulated as follows:

𝛺𝑖 = KNN
(

𝐱𝑖, 𝐱𝑗 , 𝑘
)

, 𝑗 ∈ [1,… , 𝐽 ], (12)

where KNN denotes the K-Nearest Neighbors algorithm. According to
the set 𝛺, we construct an adaptive adjacency matrix 𝐀𝑑𝑦𝑚 to replace
the immobile adjacency matrix 𝐀:

𝐀𝑑𝑦𝑚(𝑖, 𝑗) =
{

1, 𝑗 ∈ 𝛺𝑖, (13)
4

0, otherwise.
Then, the dynamic GCN operation is similar to the immobile GCN
using Chebyshev polynomial. The formula is as follows:

𝐗(𝑙+1) = 𝜎

(𝑀−1
∑

𝑚=0
𝐓𝑚(𝐋̃𝑑𝑦𝑚)𝐗(𝑙)Θ𝑚

)

, (14)

where 𝐋̃𝑑𝑦𝑚 is calculated according to 𝐴𝑑𝑦𝑚, referring to Eq. (9)

3.5. The proposed DGFormer

Our DGFormer leverages the transformer and the GCN block to
establish global long-range and dynamic local context dependencies
between human joints for 3D-HPE. As illustrated in Fig. 2, the whole
network consists of three stages: joint embedding, feature encoding,
and regression head.

Given 2D pose keypoints detected in advance, we first embed it
into the latent space through a linear layer, in where the position
embedding is added. Then, the position-aware features are processed
sequentially via three modules: transformer encoder, immobile GCN,
and dynamic GCN, to obtain pose representation. The transformer
encoder is formulated with a vanilla transformer. In the immobile GCN
module, we conduct m graph convolution operations with multi-scale
adjacency matrices acquired by Chebyshev polynomial at each layer.
We apply a summation operation for the m outputs. In the dynamic
GCN module, the KNN method is employed to calculate the dynamic
adjacency matrix. Both the GCN modules use the residual style with
two layers. Finally, in the regression head, the intermediate features
are projected into the 3D pose through a linear projection layer.

3.6. Loss function

We use Mean Per Joint Position Error (MPJPE) loss to train our
network. MPJPE is applied to minimize the errors between the ground
truth and predicted poses as:

 = 1
𝑁𝐽

𝑁
∑

𝑖=1

𝐽
∑

𝑗=1

‖

‖

‖

𝐘𝑖,𝑗 − 𝐘̂𝑖,𝑗
‖

‖

‖2
, (15)

where 𝐘𝑖,𝑗 and 𝐘̂𝑖,𝑗 denote the ground truth and estimated 3D joint
coordinates of 𝑗th joint for sample 𝑖, respectively.

4. Experiments

4.1. Datasets and evaluation metrics

In this paper, we conduct experiments on two widely used chal-
lenging 3D human pose estimation datasets, Human3.6M [17] and
MPI-INF-3DHP [18] to evaluate the proposed DGFormer.
Human3.6M. Human3.6M [17] is the most widely used dataset for 3D
single-person pose estimation. It contains 3.6 million images captured
by the MoCap system in the indoor environment. In this dataset, 11
subjects are performing 15 actions from 4 different cameras. Following
the previous works [4,34], five subjects (S1, S5, S6, S7, S8) are used for
training, two subjects (S9, S11) are selected for testing. We adopt two
evaluation protocols: protocol 1 is MPJPE between the ground truth
and estimated 3D pose. protocol 2 is P-MPJPE which is MPJPE after
rigid alignment.
MPI-INF-3DHP. MPI-INF-3DHP is a challenging 3D human pose esti-
mation dataset consisting of constrained indoor and complex outdoor
scenes. The dataset collects 8 subjects performing 8 action from 14
camera views. When implementing experiments on MPI-INF-3DHP,
we direct predict 3D pose coordinates using the model trained on
Human3.6M without fine-turning [35]. We utilize MPJPE, Percentage
of Correct Keypoint (PCK) within the 150 mm range, and Area Under

Curve (AUC) to evaluate this dataset.
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Table 1
Experimental comparisons on the Human3.6M dataset with the detected 2D poses from CPN as network inputs. (†) represents that models use temporal information. The best
results are highlighted in bold.

MPJPE (mm)(↓) Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

SRNet [21] (ECCV’20)(†) 46.6 47.1 43.9 41.6 45.8 49.6 46.5 40.0 53.4 61.1 46.1 42.6 43.1 31.5 32.6 44.8
Anatomy3D [35] (TCSVT’21)(†) 42.1 43.8 41.0 43.8 46.1 53.5 42.4 43.1 53.9 60.5 45.7 42.1 46.2 32.2 33.8 44.6
PoseFormer [28] (ICCV’21)(†) 41.5 44.8 39.8 42.5 46.5 51.6 42.1 42.0 53.3 60.7 45.5 43.3 46.1 31.8 32.2 44.3
DG-Net [32] (TIP’21)(†) 41.5 46.6 41.0 44.3 47.1 54.1 44.2 42.5 54.9 58.8 46.9 43.1 46.9 32.6 35.6 45.3
PoseMoNet [3] (PR’22)(†) 42.7 45.0 40.5 43.4 46.4 51.4 46.0 40.7 52.3 51.1 44.2 44.1 43.4 38.1 38.3 44.3
MixSTE [14] (CVPR’22)(†) 37.6 40.9 37.3 39.7 42.3 49.9 40.1 39.8 51.7 55.0 42.1 39.8 41.0 27.9 27.9 40.9

SemGCN [10] (CVPR’19) 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8
Sharma et al. [36] (ICCV’19) 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0
LCN [34] (ICCV’19) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7
Liu et al. [37] (ECCV’20) 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
METRO [38] (CVPR’21) – – – – – – – – – – – – – – – 54.0
GraphSH [11] (CVPR’21) 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9
GraFormer [16] (CVPR’22) 49.3 53.9 54.1 55.0 63.0 69.8 51.1 53.3 69.4 90.0 58.0 55.2 60.3 47.4 50.6 58.7

DGFormer (Ours, k=3) 45.8 49.6 46.2 49.6 51.4 58.7 48.9 46.2 56.6 65.1 50.9 47.2 53.2 38.8 41.5 50.0
DGFormer (Ours, k=7) 46.3 50.3 45.7 50.5 50.8 57.5 49.6 46.0 55.8 63.8 50.9 47.8 53.0 38.7 41.3 49.8

P-MPJPE (mm)(↓) Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Anatomy3D [35] (TCSVT’21)(†) 33.1 35.3 33.4 35.9 36.1 41.7 32.8 33.3 42.6 49.4 37.0 32.7 36.5 25.5 27.9 35.6
PoseFormer [28] (ICCV’21)(†) 32.5 34.8 32.6 34.6 35.3 39.5 32.1 32.0 42.8 48.5 34.8 32.4 35.3 24.5 26.0 34.6
PoseMoNet [3] (PR’22)(†) 28.4 29.6 33.9 38.5 37.4 41.9 29.4 30.9 39.8 49.7 38.5 31.6 31.8 28.2 31.7 34.7
MixSTE [14] (CVPR’22)(†) 30.8 33.1 30.3 31.8 33.1 39.1 31.1 30.5 42.5 44.5 34.0 30.8 32.7 22.1 22.9 32.6

LCN [34] (ICCV’19) 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2
Liu et al. [37] (ECCV’20) 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2

DGFormer (Ours, k=3) 35.5 38.5 37.2 40.6 40.1 44.8 37.5 35.5 45.5 52.6 40.9 36.0 41.6 30.7 34.5 39.4
DGFormer (Ours, k=7) 35.4 38.4 35.8 40.3 39.2 43.7 37.6 34.8 44.7 51.3 40.2 36.1 41.2 30.6 33.9 38.9
Table 2
Experimental comparisons on the Human3.6M dataset with the ground truth 2D poses as network inputs. (†) represents that models use temporal information. The best results are
ighlighted in bold.
MPJPE (mm)(↓) Dir. Disc Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

SRNet [21] (ECCV’20)(†) 34.8 32.1 28.5 30.7 31.4 36.9 35.6 30.5 38.9 40.5 32.5 31.0 29.9 22.5 24.5 32.0
PoseFormer [28] (ICCV’21)(†) 30.0 33.6 29.9 31.0 30.2 33.3 34.8 31.4 37.8 38.6 31.7 31.5 29.0 23.3 23.1 31.3

Liu et al. [37] (ECCV’20) 36.8 40.3 33.0 36.3 37.5 45.0 39.7 34.9 40.3 47.7 37.4 38.5 38.6 29.6 32.0 37.8
GraphSH [11] (CVPR’21) 35.8 38.1 31.0 35.3 35.8 43.2 37.3 31.7 38.4 45.5 35.4 36.7 36.8 27.9 30.7 35.8
GraFormer [16] (CVPR’22) 32.0 38.0 30.4 34.4 34.7 43.3 35.2 31.4 38.0 46.2 34.2 35.7 36.1 27.4 30.6 35.2
PoseGTAC [33] (IJCAI’21) 37.2 42.2 32.6 38.6 38.0 44.0 40.7 35.2 41.0 45.5 38.2 39.5 38.2 29.8 33.0 38.2

DGFormer (Ours, k=3) 31.3 34.6 28.1 32.6 33.2 39.3 37.8 30.2 36.6 38.9 33.4 33.3 34.3 28.1 29.7 33.4
DGFormer (Ours, k=7) 31.5 34.3 28.2 32.2 31.3 36.8 37.0 29.4 34.9 37.8 31.8 32.5 33.0 26.7 28.9 32.4
4.2. Implementation details

We implement the proposed method in the Pytorch1 platform with
single NVIDIA GTX 1080 Ti GPU. We apply pose flipping horizontally
s data augmentation in training and testing phases. We set 𝐿 = 6
or DGFormer, ℎ = 8 for self-attention heads, and 𝑑 = 128 for feature
mbedding dimension. The 𝑚 order of affinity in immobile GCN is 3,
nd we report the results of 𝑘 equals to 3 and 7 for KNN in dynamic
CN. We apply Adam optimizer with an initial learning rate of 0.0001
nd a decay rate of 0.99 to train the model for 50 epochs. We use
he cascaded pyramid network (CPN) [9] as the 2D pose detector for
uman3.6M and ground truth 2D pose for MPI-INF-3DHP.

.3. Comparison with state-of-the art

esult on Human3.6M. To validate the superior performance of the
roposed DGFormer, we make comparisons with state-of-the-art meth-
ds on Human3.6M. The comparison results of using 2D poses detected
y CPN as input are displayed in Table 1. The last column is the
verage error. It can be observed that our model outperforms other ap-
roaches (except methods using video sequences as inputs) under both
PJPE (49.8, top) and P-MPJPE (38.9, bottom) metrics, respectively.
ompared with the very recent graph-transformer-based method, i.e.,

1 https://pytorch.org/
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GraFormer [16], DGFormer noticeably surpasses it by 8.9 (15%) in
MPJPE. Moreover, DGFormer makes more accurate 3D pose predictions
on complex actions, such as Photo, Smoke, WalkDog, which contain
more challenges. The comparison results demonstrate that our method
can achieve remarkable performance gains by exploiting adequate local
and global context information among skeleton joints.

To avoid the interference of 2D keypoints estimated by 2D pose
detectors, we further implement experiments on Human3.6M using
ground truth 2D poses as input and compare with the most advanced
approaches. We report the comparison results in Table 2. Our method
obtains an average MPJPE of 32.4 under MPJPE protocol and achieves
approximately 7.8% improvement compared with GraFormer [16].
Furthermore, DGFormer achieves the best score in 11 actions (except
for methods using temporal information).
Result on MPI-INF-3DHP. In this paper, we also utilize the chal-
lenge MPI-INF-3DHP dataset to validate our model’s generalization
performance, since it contains both indoor and outdoor scenarios with
diversified pose variations. We predict the 3D pose coordinates by
directly applying the model trained on Human3.6M. Table 3 shows
the quantitative results compared with other methods. Although we
utilize the model trained on Human3.6M without fine-tuning or re-
training post-process, our approach achieves the best performance on
all evaluation metrics (PCK, AUC, and MPJPE). The results indicate
that the proposed DGFormer can adapt to unseen datasets with great
generalization ability.
Qualitative Results. We also display some visual 3D pose predictions
of Human3.6M and MPI-INF-3DHP datasets. The comparison results

https://pytorch.org/
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Table 3
Experimental comparisons on the MPI-INF-3DHP dataset with the ground truth 2D poses
as network inputs. (†) represents that the models use temporal information. The best
results are highlighted in bold.

Method PCK (%)(↑) AUC (%)(↑) MPJPE (mm)(↓)

Anatomy3D [35] (TCSVT’21)(†) 87.9 54.0 78.8
PoseFormer [28] (ICCV’21)(†) 88.6 56.4 77.1
MHFormer [13] (CVPR’21)(†) 88.6 56.4 77.1
MixSTE [14] (CVPR’22)(†) 94.4 66.5 54.9

Pavalakos et al. [4] (CVPR’18) 71.9 35.3 –
Ci et al. [39] (TPAMI’20) 74.0 36.7 –
GraphSH [11] (CVPR’21) 76.4 39.3 –
PoseGTAC [33] (IJCAI’21) 80.1 45.8 –

DGFormer (Ours, k=3) 84.4 52.5 83.9
DGFormer (Ours, k=7) 85.5 53.6 𝟖𝟎.𝟒

Table 4
Ablation studies on Human3.6M with ground truth 2D poses as network inputs.
Baseline: Transformer Encoder. I-GCN: Immobile GCN. D-GCN: dynamic GCN.

Method MPJPE (mm)(↓) P-MPJPE (mm)(↓)

Transformer (Baseline) 36.9 30.0

Transformer + I-GCN 34.1 27.4
Transformer + D-GCN 35.7 27.9

Transformer + I-GCN + I-GCN 34.8 27.4
Transformer + D-GCN + D-GCN 35.1 27.4
Transformer + I-GCN + D-GCN (DGFormer) 32.4 25.6

of the GraFormer [16], the Transformer, our DGFormer, and ground
truth on some challenging poses are shown in Fig. 3. The top and
bottom three rows are the results on Human3.6M and MPI-INF-3DHP,
respectively. We use green arrows to indicate where the predictions
are different and blue circles to mark the corresponding positions on
ground truths. It can be observed that for either constrained indoor
or challenging outdoor actions, our method can predict more accurate
3D pose results than the GraFormer and Transformer models. Fur-
thermore, our model can also make correct predictions when facing
self-occlusions and depth ambiguities, which can be seen from row
1 and row 5 in column 4 of Fig. 3. The qualitative results further
demonstrate the impressive prediction abilities of our approach.

4.4. Ablation studies

We conduct ablation experiments on Human3.6M dataset under
MPJPE and P-MPJPE criterion to verify the effectiveness of each mod-
ule in our model. To avoid being affected by estimation errors of
different 2D keypoints detectors, we adopt the ground truth 2D poses as
input. The transformer Encoder is regarded as the baseline model [12]
as shown in Fig. 2(b). We report the results in Table 4. The details of
modules as follows:

• Baseline: The baseline model contains 6 layers and 8 heads for the
standard Transformer encoder. The embedded feature dimension
is 128.

• Immobile GCN (I-GCN): As stated in Section 3.4, I-GCN cap-
tures multi-scale high-order context information based on the
natural physical connection. We set the degree M of Chebyshev
polynomials to 3.

• Dynamic GCN (D-GCN): As mentioned in , the structure of D-GCN
is similar to I-GCN. The difference is that the affinity matrix is
dynamic, calculated by KNN according to different action poses.
The degree of Chebyshev polynomials 𝑀 = 3. We set 𝐾 = 7 for
KNN method.

As can be observed in Table 4, the transformer is able to reduce
rediction errors by 2.8 and 1.2 for MPJPE metric, 2.6 and 2.1 for
-MPJPE metric, respectively, when incorporating immobile GCN (I-
6

CN) or dynamic GCN (D-GCN). When considering the global context,
Table 5
Parameter analysis experiments for different architecture parameters (depth, dimension)
in DGFormer. The evaluation is performed on Human3.6M with MPJPE(mm) using CPN
detected 2D poses as network inputs.

# Depth (𝐿) Dimension (𝑑) MPJPE (mm)(↓)

1 4 32 54.3
2 6 32 53.6
3 8 32 53.4

4 4 64 50.4
5 6 64 51.7
6 8 64 51.0

7 4 128 50.0
8 6 128 49.8
9 8 128 51.2

local physical connections, and sparse long-range information simulta-
neously, the proposed DGFormer achieves the lowest prediction errors
of 32.4 under the MPJPE protocol and 25.6 under the P-MPJPE proto-
col. To explore whether the performance gains arise from the increasing
model capacity, we add two I-GCN and two D-GCN modules into the
baseline model, making our DGFormer have the same parameters as
the two variant models. We can observe that the prediction errors of
both models are higher than our DGFormer. The results demonstrate
that the global information, local topology clues, and sparse long-range
relationships among joints are crucial to 3D human pose estimation.
The performance gains prove the effectiveness and superiority of the
proposed DGFormer.

Since different modules in our model capture different types of
dependencies, we further visualize the joint dependencies in Fig. 4. We
take the 𝑆𝑖𝑡𝑡𝑖𝑛𝑔𝐷𝑜𝑤𝑛 action of Subject 𝑆11 in Human3.6M dataset as an
example. Specifically, (a) denotes the 2D image and predicted 3D pose.
We take the pelvis joint as an example. The dotted line indicates that the
two joints are related. The thicker the lines, the closer the dependencies
between the skeleton joints. (b) represents the natural connections
from I-GCN. (c) is the dynamic relationships computed on the input
sample by D-GCN. (d) shows the global dependencies obtained by the
transformer encoder. The results of (b), (c), (d) demonstrate that our
method can effectively capture different types of interactions between
joints.

4.5. Depth analysis and discussion

Architecture Parameters Analysis. Table 5 shows the performance
under the MPJPE metric with various parameter combinations. Depth(𝐿
represents the number of layers used in the transformer encoder,
and Dimension(𝑑) indicates the embedded feature dimension in the
model. According to different embedding dimensions, we divide the
configurations into three groups to verify the model performance under
different configurations. As can be observed in Table 5, the 3D pose
estimation error begin to increase as the depth increases and reduce
as the embedding dimension increases. Therefore, we set 𝐿 = 6 and
𝑑 = 128 to achieve the best performance and balance model size.
k in dynamic GCN. We conduct experiments on the Human 3.6M with
the ground truth 2D poses as input to explicitly illustrate the effects of
different neighbor joints k in dynamic GCN. We report the MPJPE and
P-MPJPE results in Fig. 5. To ensure the rigor of the experiments, we
use the mean results of multiple runs. We can observe that with the
increase of 𝑘, both the MPJPE and P-MPJPE errors first decrease and
then increase, indicating that too few or many neighbors for a joint may
result in insufficient or noisy contextual information. In this paper, we
simultaneously report experimental results of 𝑘 = 3 and 𝑘 = 7.
m in GCN. We investigate the sensitivity of m in GCN mentioned in
Section 3.4, where we apply Chebyshev polynomial as the convolution
kernel. We fix 𝑘 = 7, 𝐿 = 6 and 𝑑 = 128, when we change m in
our DGFormer. For this experiment, we also utilize ground truth 2D
poses as input on Human3.6M under MPJPE metric. m indicates that
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Fig. 3. Visualizations of 3D pose prediction on the Human3.6M and MPI-INF-3DHP datasets. The top three rows: results on Human3.6M. The bottom three rows: results on
MPI-INF-3DHP.

Fig. 4. Visualizations of learned joint dependency significance for the SittingDown action in Human3.6M test set S11.



Pattern Recognition 152 (2024) 110446Z. Chen et al.
Fig. 5. Performance evaluations with different neighbor joints k in dynamic GCN on Human3.6M with ground truth 2D poses as inputs. (a) MPJPE, (b) P-MPJPE.
Fig. 6. Performance evaluations with different m (joint neighbors with m scales) in GCN. The evaluation performs on Human3.6M using ground truth 2D poses as inputs.
each joint has neighbors with m scales ranging from 0-order to m-
order and 𝑚 = 0 means each joint has only self-connection. As can
be seen in Fig. 6, when m goes from 0 to 1, the estimation error
decreases significantly. As expected, when we further increase m and
set it as 3, the estimation error of DGFormer decreases from 35.3 to
32.4 with an 8.2% error reduction. It is unquestionable that the in-
corporation of multi-scale high-order context information can enhance
model performance dramatically. However, when m continues to grow,
the estimation error increases. The reason may be that too high-order
neighbors will introduce some noisy contextual information. To balance
efficiency and performance, we choose 𝑚 = 3 in our DGFormer.
Discussion on model complexity. Finally, we make comparisons with
state-of-the-art methods regarding model parameters, model perfor-
mance, and computational time (frames per second (FPS) in the testing
phase). The FPS for all the compared methods is calculated on a
single NVIDIA GeForce RTX 3090 Ti GPU, with the codes and pre-
trained models provided by the authors. The experiments are im-
plemented on Human3.6M with the ground truth 2D poses as in-
put. It can be observed from Table 6 although our method performs
slightly worse than the video-based methods utilizing temporal infor-
mation, i.e., Anatomy3D [35], PoseFormer [28] and MHformer [13],
our model has a much fewer model parameter. Nevertheless, it should
be noted that our model obtains the best performance with a moderate
model size compared with the single frame-based methods. In terms
of computational time, the FPS of our method is much faster than the
video-based methods. Even though the FPS is not the most promising
8

Table 6
Model complexity comparisons on Human3.6M using ground truth 2D poses as network
inputs. (†) represents that the models use temporal information. FPS is computed on a
single NVIDIA GeForce RTX 3090 Ti GPU.

Methods Parameters (M) MPJPE (mm)(↓) FPS (↑)

Anatomy3D [35](†) 59.18 32.3 665
PoseFormer [28](†) 9.60 31.3 1940
MHFormer [13](†) 18.92 30.5 347

FC [7] 4.29 45.5 60 371
SemGCN [10] 0.43 43.8 15 676
Pre-agg [37] 4.22 37.8 –
GraphSH [11] 3.70 35.8 41 795
GraFormer [16] 0.65 35.2 59 512

DGFormer(Ours) 4.34 32.4 5544

compared with the single frame-based methods, our model’s speed
meets real-time requirements. The impressive prediction errors with
small model parameters and fast inference speeds demonstrate the
advantages of our model.

4.6. Qualitative results on videos in-the-wild

Estimating 3D human poses from in-the-wild videos is challenging
due to the complex environment and unknown camera parameters.
Applying a pre-trained model to in-the-wild videos is a practical way
to verify network generalization ability. Specifically, we first utilize
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Fig. 7. Qualitative results of our method for in-the-wild videos.
YOLOv3 [40] to detect the person from videos, then employ HR-
Net [20] as the 2D keypoints detector. At last, the pre-trained DG-
Former on Human3.6M is used to estimate 3D human poses for videos
on Bilibili.2 We randomly choose challenging dance, skating, martial arts,
and dunking videos as testing videos. As shown in Fig. 7, our method
achieves plausible high fidelity results for in-the-wild videos, validating
the superior generalization of our method.

2 https://www.bilibili.com/
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5. Conclusion

In this paper, we propose the dynamic graph transformer network
for 3D human pose estimation. The proposed model takes advantage of
the transformer encoder, immobile GCN, and dynamic GCN modules
to build the global long-range, sparse dynamic, and natural physical
interactions of skeleton joints. Our method simultaneously leverages
the global and local diversified context information for performance
improvements. Comparative experiments on Human3.6M and MPI-INF-
3DHP datasets demonstrate that our framework outperforms state-
of-the-art image-based methods, and qualitative tests on in-the-wild

https://www.bilibili.com/
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videos also verify the superior generalization ability of our method.
However, our method still performs slightly worse than the most ad-
vanced video-based methods with much fewer parameters since we
do not utilize the temporal information of the skeleton sequence. In
the future, we attempt to incorporate temporal information to further
reduce the intrinsic depth arbitrariness, improve the robustness to
occlusion and enhance the 3D pose prediction ability.
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