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Background and objective: Registration of the preoperative 3D model with the video of the digestive tract is the
key task in endoscopy surgical navigation. Accurate 3D reconstruction of soft tissue surfaces is essential to
complete registration. However, existing feature matching methods still fall short of desirable performance, due
to the soft tissue deformation and smooth but less-textured surface.

Methods: In this paper, we present a new semantic description based on the scene graph to integrate contour
features and SIFT features. Firstly, we construct the semantic feature descriptor using the SIFT features and dense
points in the contour regions to obtain more dense point feature matching. Secondly, we design a clustering
algorithm based on the proposed semantic feature descriptor. Finally, we apply the semantic description to the
structure from motion (SfM) reconstruction framework.

Results: Our techniques are validated by the phantom tests and real surgery videos. We compare our approaches
with other typical methods in contour extraction, feature matching, and SfM reconstruction. On average, the
feature matching accuracy reaches 75.6% and improves 16.6% in pose estimation. In addition, 39.8% of sparse
points are increased in SfM results, and 35.31% more valid points are obtained for the DenseDescriptorNet
training in 3D reconstruction.

Conclusions: The new semantic feature description has the potential to reveal more accurate and dense feature
correspondence and provides local semantic information in feature matching. Our experiments on the clinical
dataset demonstrate the effectiveness and robustness of the novel approach.

reconstruction based on monocular video is the structure from motion
(SfM) [25,41]. In natural scenes, SfM methods have been developed in

1. Introduction

For patients with gastrointestinal diseases, digestive endoscopy is
still the most effective way of diagnosis and treatment. However,
digestive endoscopic surgery has strict requirements for surgeons’
experience and skills, due to the narrow field of view and lack of depth
perception. In recent years, with the rapid development of VR/AR
techniques, an increasing number of researchers choose AR based sur-
gical navigation technology to solve the difficulties mentioned above.
Technically, the registration of the preoperative 3D model with the
endoscopic video of the digestive tract is the key task. And surgical scene
reconstruction using a monocular endoscope is the first step to complete
the registration. Technically, one effective way to handle the 3D

recent years with a number of theories and applications to tackle the
problem of 3D reconstruction of rigid objects under constant illumina-
tion [35]. However, in the endoscopy surgical scene, two main issues
affect SfM reconstruction performance. One is the soft tissue deforma-
tion, which violates the static scene assumption. The other is the smooth
and repetitive soft tissue texture, which usually results in sparse features
and wrong feature matching. At present, the state-of-the-art work [23]
used self-supervised information provided by SfM to train the network
and tried to solve the difficulty of feature matching in endoscopic sur-
gery. However, if SfM fails to provide reasonable results, especially
when tissue deformation occurs, it may not work correctly. Moreover, it
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Fig. 1. The framework of the proposed method. Each node in the semantic scene graph contains 2 features. Different color lines between nodes represent different
feature matching correspondences generated by SIFT, contour points.
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Fig. 3. Illustrations of the result of contour extraction in endoscopy images. (a) (c) (e) and (g) are the original images, and the others are the extracted contours. (a)

and (c) are from the phantom dataset. (e) and (g) are from the real dataset.

is difficult to generate a large number of stable 3D points in traditional
SfMs due to highlight reflection and soft tissue deformation.

In this paper, we present a new semantic description based on the
scene graph to explore new SfM methods for endoscopy. Firstly, a se-
mantic feature descriptor, which combines SIFT feature and contour
feature, is designed to obtain denser matching. The contours of the soft
tissue seldomly change in different lighting conditions. So contour
feature matching is more robust, less affected by highlights, and has
fewer noise points compared with the traditional method. Secondly, we
design a clustering algorithm based on the proposed semantic feature
descriptor. Then we utilize the scene graph to manage the feature
matching and construct the semantic description. It increases the num-
ber of stable feature points and improves the accuracy of pose estimation
in SfM with a denser 3D point cloud. Finally, the point cloud and the
pose are used as the input of a deep neural network and provide more
accurate self-supervised information. The innovative contributions are
summarized as follows:

@ We design a semantic feature description by combining SIFT feature,
contour feature through the scene graph construction. Dense features
result from stable dense points near contours and the semantic
feature description emphasizes the local relationship among con-
tours, which provides critical semantic information for better
reconstruction.

@® We propose a clustering algorithm based on semantic feature
description to speed up the initialization of structure from motion.
Meanwhile, the clustering results can guide the priority reconstruc-
tion of the physiological structure of interest. It provides more ac-
curate data sets for the training by DenseDescriptorNet afterward.

@® We implement a new SfM framework with semantic descriptors. It
simplifies the complex soft tissue deformation into a multitude of
localized rigid reconstruction sub-tasks, which improve the recon-
struction performance. Experiments confirm that it can obtain denser
point clouds with more accurate pose estimation.

2. Related works
2.1. Point and line features

Feature matching is a key technology in image reconstruction. The
most popular point features include SIFT [6], SURF [1], ORB [34], and
some of their variants. However, in endoscopic images, only a few
matching relationships could be extracted using the above features due
to the existence of highlight and noise. Basically, dense feature corre-
spondences can enhance the density of sparse reconstruction and the
accuracy of camera trajectory estimation [22]. In recent years, re-
searchers started to shift their foci on dense point features based on
learning methods, for instance, a local image descriptor named DAISY
[39], universal correspondence network (UCN) [3] and a
self-super-vised interest point detection and description (SuperPoint)
[7]1. However, the lack of large labeled data sets is a critical challenge.

At present, the state-of-the-art work [23] uses a self-monitoring
strategy to train the network and tries to solve the difficulty of feature
matching in endoscopic surgery. Self-supervised information refers to
the point cloud results and camera poses obtained by SfM. The sparse
point cloud results from SfM is reprojected to the image planes and is
used as sparse feature matching ground truth. The accuracy of this
method depends on the correct feature matching and camera poses. If
SfM fails to provide reasonable results, especially when tissue defor-
mation occurs, the latest learning-based surface reconstruction method
may not work correctly [23].

There are also many methods to extract line features from natural
scenes, for example, edge lines (EDlines) [5] and line segment detector
(LSD) [13]. Most of the line segments extracted directly from the
endoscopic images are seldom due to the highlight. These small line
segments can neither accurately represent the overall contour nor exist
stably. In addition, there are some methods to extract and match con-
tours in natural scenes, such as [14,21]. The contour of soft tissue is too
complex to be described by simplified mathematical symbols. Fortu-
nately, a chain code method is designed to encode any geometric
structure. Through this method, the coding operation and basic
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Fig. 4. Examples of our semantic feature matching. (a)-(f) indicate that our method can perform contour matching on the regular contour of the intestine. (g)-(1)
show that our method can also perform contour matching on the irregular convex structure of the soft tissue in the intestine.

operation of this method are described [10]. Researchers focused on the
nature of chain code, and the steps of rotating, expanding, and
smoothing line structure, and studied the steps of determining the
similarity between two contours through related technologies [11].
Based on the chain code theory, the recent trend is to use biological
abstraction to determine how to move and encode information around
boundaries. This method has many applications in image generation
[26] and image compression [8,9,17].

2.2. Structure from motion

At present, the widely used tracking and reconstruction technologies
include simultaneous localization and mapping (SLAM) [24], structure
from motion (SfM) [4,19,37], non-rigid structure from motion (NR-SfM)
[30-32], shape from template (SfT) [18], optical flow [29], and neural
network technology [28,33,42]. According to the tracking method, the
location and tracking methods can be divided into two categories:
manual tag-based location and unmarked location. Labeled methods are
mainly used in rigid organ surgery. SfM and SLAM don’t utilize manual
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Fig. 5. Comparision of semantic feature matching and SIFT feature matching. (a) and (c) are the results of SIFT feature matching. (b) and (d) are the results of

contour feature matching.

Table 1 Table 4
Results of contour extraction. Feature matches accuracy in semantic feature matching.
Sequence Contour point num Contours Method Sequence Baseline Ours
Seq.1 43.6623 0.769 baseline [38] Seq.1 50.5% 74%
315.868 2.37865 ours Seq.2 49.8% 70.8%
Seq.2 158.852 2.778 baseline [38] Seq.3 61.5% 89.5%
318.754 3.049 ours Seq.4 54.3% 79.66%
Seq.3 351.471 20.563 baseline [38] Seq.5 51.2% 71.33%
480.966 6.827 ours Seq.6 42% 68.5%
Seq.4 318.733 7 baseline [38]
484.8 4 ours
Seq.5 86 0.8 baseline [38] optical flow method does not rely on feature extraction, the changing
280 2.3 ours light does not meet the luminosity consistency assumption.
Seq.6 36.9 23.5 baseline [38]
74.19 1.99 ours
2.3. Scene graph
bl In SfM, we use a graph that contains the matching relationship be-
Table 2, . . . tween images and features as the input for the tasks afterward. However,
Comparision of different contour selection factors. . . . . . .
the underlying features might not contain specific semantic information.
Strategy Accuracy Highlight factor Johnson et al. [16,27,43] first defined a scene graph as a directed graph
Length 86.6% 0.01% representation that contains objects and their attributes and relation-
Area 79.3% 46.8% ships. Based on the similarity of the two structures in the above methods,
we combine the semantic feature through a scene graph to obtain more
robust and dense feature matching.
Table 3

Results of contour matches in each image pair.

Sequence Average contour matches
Seq.1 337.68

Seq.2 230.496

Seq.3 182.994

Seq.4 215.456

Seq.5 134.8268

Seq.6 160.5196

tags. SLAM can meet the real-time requirements of tracking task in
intraoperative navigation. SfM has better performance in reconstruction
which is important for registration. The traditional feature-based SfM
utilized threshold strategy to distinguish rigid points from non-rigid
points. NR-SfM learns the deformation model from observations, while
SfT assumes the defined template and estimate the deformation of each
image. These methods all depend on feature extraction. Although the

3. Methods

Given an image sequence, our method can offer dense correspon-
dences with the semantic description for feature matching in order to
improve the accuracy of SfM and increase the density of the point cloud.
The pipeline is illustrated in Fig. 1. First, we performed feature extrac-
tion on the input image, including SIFT features and contour features.
The contour feature extraction can obtain the keypoints and three types
of descriptors on the contour. The contour descriptors are used as the
semantic description of each image for clustering. The clustering result
is used as guidance for initialization. Both the contour feature matching
pair and the SIFT matching pair are added to the scene graph and pro-
vide more accurate pose estimation. The details are shown in Algorithm

Algorithm 1. Scene-graph Driven ContourSfM
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Fig. 6. The influence of different semantic descriptors on feature matching. (a) are the results only using the global shape descriptor. (b) are the results using the
global shape and appearance descriptor.

Fig. 7. Comparison of semantic feature matching performance in endoscopy. We use reprojection error as the measurement. The green points are the extracted SIFT
points. The blue and red points are the reprojected points. (a) and (d) are the results of semantic feature matching. (b) and (e) are the results of contour matching. (c)
and (f) are the results of SIFT feature matching. The distance between the blue point and the green point is closer in (a) and (d), which means the camera pose
estimated by our semantic feature matching is more accurate.
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Table 5
Improvement of pose estimation accuracy with semantic
feature matching.

Sequence Improved percentage
Seq.1 25%

Seq.2 16.42%

Seq.3 19.8474%

Seq.4 5.47%

Table 6
Reprojection error in semantic feature matching.
Example Semantic features Contour SIFT
1 19.8474 25.7558 138.6640
2 25.8629 27.4980 1199.3329
3 454.693 410.362 5.16245e+19
4 4.91149¢-13 5.7567e-13 5.756743e-13
Table 7

Comparison of semantic description performance in clinical endoscopy in the
SfM task, x means the method is not available because the soft tissue surface is
not Lambert surface. The percentage in brackets is the change rate in point
clouds based on [35].

Dataset SR point number Registered ratio Methods
Seq.1 4614 (+65.3%) 140/206 ours
2791 80/206 [35]
413 17/206 [12]
Seq.2 932 (+10.55%) 115/193 ours
843 68/193 [35]
X X [12]
Seq.3 12021(45.66%) 1565/2001 ours
11376 1964/2001 [35]
X X [12]
Seq.4 70 10/15 ours
0 0 [35]
X X [12]
Seq.5 985(+27.425%) 93/97 ours
773 86/97 [35]
X X [] 2]
Seq.6 10062(+90.2%) 1021/1400 ours
5288 724/1400 [35]
X x [12]

Computers in Biology and Medicine 146 (2022) 105616

Algorithm 1 Scene-graph Driven ContourSfM

Input: Image sequence of Nimages Q= {1,,1,,....1;,....1,}.

Output: Dense feature matches M.

1: Conotour keypoints set K and semantic descriptors set
D.K « ¢, D « ¢.

: forall I, € O do

3:  Extract and store SIFT features for I,.

4:  Extract contour keypoints K, and contour descriptor

D; for I, based on Algorithm 2.

K=KUK, D=DuD,.

6: end for

7: Generate the semantic descriptor .S with D and similar-
ity measurement based on Section 3.2.

8: Clustering with .S and obtain clustering result R.

9: SIFT feature matching and obtain SIFT feature matches
M,.

10: Contour feature matching based on .S and obtain contour

feature matches M, based on Section 3.3.
11: Generate semantic scene graph G with M,M, and R
based on Section 3.4.

12: Initialization with G based on Section 3.5 in SfM .

13: Incremental reconstruction in SfM and obtain 3D point
clouds P and camera poses C.

14: Obtain dense feature matches M, with P and C based
on dense model in Section 3.6.

15: return M,

[\

4

3.1. Contour dense keypoints and descriptors

To accurately and densely describe the soft tissue contour, we pro-
pose a new semantic feature descriptor, which mainly includes dense
contour features and SIFT feature [6]. The overall process of extracting
key points and descriptors on contours is shown in Fig. 2. We obtain the
dense keypoint set of soft tissue contours with a series of matrix oper-
ations. And we utilize three descriptors to describe the shape and
appearance of one contour. Firstly, the shape context method [2] is used
as a global shape descriptor to describe the distribution of all 2D contour
keypoints. Secondly, a descriptor based on color information to express
the appearance characteristics of the contour is designed to distinguish
the similar contour by the surrounding colors. Finally, we devise a local
shape descriptor to distinguish the shape details between contours. The
details are shown in Algorithm 2.

Algorithm 2. Contour Keypoints and Descriptors Extraction in Single
Frame.
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(c) (d)

Fig. 8. Qualitative comparison of traditional SfM results and our contourSfM results. (a) and (c) are the results of SfM [35]. (b) and (d) are the results of our
contourSfM. Our method has more accurate pose estimation and clearer contour reconstruction.

Fig. 9. Qualitative comparison of different SfM methods’ influence on dense reconstruction results in endoscopy. (a) The original image is captured by the endo-
scope. (b) The dense point cloud resulting from the original SfM [36]. (c) The dense point cloud is obtained from Ref. [12]. (d) The dense point cloud resulting from
our new method.
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Fig. 10. An illustration of scene graph construction. (a) is the scene graph constructed by SIFT feature matching. (b) is the scene graph augmented by our contour
feature matching. Using the scene graph in (a) can not be successfully initialized in some small samples, but by using the scene graph we proposed, SfM can initialize

and construct a contour point cloud.

Table 8
Comparision of different SfM results for deep learning. Our contourSfM provides
more valid points for the learning-based method.

No. Images 3D points Valid points Methods
Seg.1 86 773 314 [35]
93 985 526(+67.52%) ours
Seg.2 745 9434 2829 [35]
745 9595 3481(+423.04%) ours
Seg.3 724 5288 513 [35]
1021 10062 665(+29.6%) ours
Seg.4 283 2378 212 [35]
179 2753 310(+46.22%) ours
Seg.5 80 2791 1225 [35]
140 4614 1351(+10.2%) ours
Seg.6 1964 11376 526 [35]
1565 12021 1391(+164.44%) ours

Algorithm 2 Contour Keypoints and Descriptors Extraction
in Single Frame.

Input: Inputimage /,.
Output: Contour set B, global shape descriptors S, global
appearance descriptors A, local shape descriptors 5.
B¢ S, <S8 <dp A<
1; < downsampling(1,)
1, < canny(d,)
1, < threshold(1,)
B « findContours(1,)
B « selectContours(B)
for each b € B do
s < shapeContext(b)
a < appearance(b)
s; < shapeEncoding(b)
Sg=8,Us,, 8 =8Us,A=AUa
: end for
: return B, Se, A, S

R A A i

— e

Specifically, for dense contour keypoint extraction, we utilize
morphological closed operation and hole-filling processing to enhance
edges and obtain the stable dense point set. The dense point set is rep-
resented by B = {b;, by, ..., by}. We define the shape context of each

contour point as sg. The shape context of the key points composes the
descriptor of this contour. For the appearance descriptor, the 256-
dimensional descriptor (i.e., local appearance) can be obtained by per-
forming convolution operations and maximum pooling operations on
the pixels around the main contours. For the local shape descriptor, a
local coordinate system is set up for each contour point. The 128-bit
descriptor vector (i.e., local contour shape) can be formed by encod-
ing the relative positions of 64 adjacent points in four quadrants as bi-
nary patterns.

3.2. Soft tissue surface deformation clustering

We compute the global similarity G between two images I; and I; 1
based on the shape and the appearance descriptor, where G (I;, I 1) =S
(I, Ii11) + D (44, Li; 1), S represents the global shape similarity function, D
represents the global appearance similarity function. We introduce the
appearance descriptor of each contour in last section. The global
appearance of an image is constructed by the collection of contours and
their appearance descriptors. So the global appearance similarity be-
tween images is computed using cosine similarity, as shown in Eq. (1),

v

1 -u
D, 1) =— —, 1
(O os) =3 argmasoren W

where v represents a descriptor in I;, and u is a descriptor in I;;1, m
represents the number of contours. For feature compression, we use the

shape context method [2] on dense point sets (B; and B;.1) to get the
global shape similarity, as shown in Eq. (2),

1
S(L, L) =1 —mZarg min C(b;, a)—
’ @
1 .
mzafg min C(f, bi11),

where C denotes the matching cost function defined in Ref. [2], B;
represents the dense point set in I;, B;.; represents the dense point set in
Ii11, b; represents a point in B;, b;;1 represents a point in Bi;1, «a = T
(bi+1), p = T (by, 1 is the empirical value, and T denotes the transform
function in Ref. [2]. Finally, the endoscopic image sequences are clus-
tered based on the basic sequential algorithm scheme (BSAS).

3.3. Feature matching with semantic feature descriptors

After constructing semantic descriptors and defining similarity
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(b)

Fig. 11. Deep learning-based feature matching based on different SfM results. (a) is the result from the baseline. (b) is the result of our improved data. Our method
provides more valid self-supervised information and promotes the performance of deep learning feature matching.

measurement between semantic features, we perform feature matching
between contours of different pictures. A video can be regarded as a
sequence of images arranged according to the shooting time. To ensure
the overlap of the scene, the interval between each image pair is within
20 frames. First, the global shape descriptor is used to traverse and
match the main contours of each pair of pictures, and the candidate
contour matching with a higher similarity coefficient is selected. Next,
we employ local color features to refine the matching relationship of the
contours. In addition, the contour extraction may be incomplete due to
changes in the viewing angle. Therefore, the local contour shape
descriptor is used to determine the correspondence between the local
contour and the global contour. After the above steps, the point-to-point
correspondence between the two contours is generated.

In addition, there are some factors that affect the result and accuracy
of contour matching, such as the number of points contained in the
contour and the length of the contour. Specifically, the two contours
may contain the same number of points, but the lengths of the contours
are different. It may lead to a number of mismatches. Therefore, the
length of the contour is a key property in selecting the candidate con-
tours and the sampling step is also necessary when generating the
matching between different points. According to the point number of the
shorter contour, we uniformly downsample the longer contour. For
example, if there are two contours A and B, and the point number of A is
twice the point number of B, then a sample is taken at an interval of one
point.

3.4. Semantic feature description with scene graph

In order to obtain the dense feature matching of soft tissue when
deformation occurs, we construct a new semantic feature description
based on a scene graph, which includes SIFT descriptor, dense point
descriptor around contours and their associative feature correspon-
dences. The proposed approach distinguishes the deformed scene with
multiple constructed scene graphs. A single scene graph G = (O, E) is
used to represent the matching relationship between images categorized
into the same group using the clustering method, O is a set of nodes, and

10

each node represents the semantic feature descriptor of an image.
Moreover, E is a set of edges, and each edge represents the matching
relationship between semantic feature descriptors. Existing methods
usually use a single feature descriptor, but our semantic feature
descriptor contains two different feature descriptors (SIFT feature
descriptor, dense contour descriptor). With the semantic information of
contours, it can construct the denser corresponding relationship among
point-point sets through the scene graph.

3.5. SfM augmented by semantic feature description

To fully utilize the semantic information among local frames, the
semantic feature description G is applied to our SfM framework. First,
we enhance SfM’s performance by utilizing robust and dense corre-
spondences provided by the semantic description. Since our method has
distinguished the deformed scene, many outliers can be filtered. Then
we improve the non-iterative solution named EPnP [20] in the SfM with
dense points. We define the specific cost function E that combines the
two types of geometric entities, where E = E; + Eg4, E represents the
reprojection error of SIFT features, E4 represents the reprojection error
of contour points. The camera pose parameters 6 = {R,t} are optimized
at each frame with a bundle adjustment (BA) strategy [40].

Generally, the rapid movement of the camera and the deformation of
soft tissue will lead to the failure of reconstruction due to the undesir-
able performance of feature matching. Our semantic description utilizes
stable contour features to provide robust and dense feature matching
relationships. Moreover, clustering can be used as a priori information to
classify the scene information in advance and actively divide it into
multiple templates. This can speed up the initialization process, from the
original random search to the guided search.

3.6. Data improvement for DenseDescriptorNet training
The dense model called DenseDescriptorNet is based on [23]. The

input is an image of the digestive tract scene taken through an endo-
scope. The sparse 3D reconstructions and camera poses can be obtained
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from SfM. It obtains the dense features of each image through the
DenseNet network and then uses the POI convolutional layer to generate
feature matching. Specifically, the feature matching problem is trans-
formed into a key point positioning problem. The keypoint in each
picture selects the position with the largest response in the corre-
sponding target heat map.

This method has better results in nasal endoscopy scenes. However,
the digestive tract scene is more complicated, and the soft tissues are
easily deformed. Through analysis of the acquired features, it can be
found that some true values come from the vicinity of the highlight, as
shown in Fig. 5 (a) and (c). The use of contourSfM increases the feature
matching of the real physical structure. It can add more effective 3D
points in the limited data and increase the number of real values.
Moreover, it can increase the accuracy of pose estimation together with
the sift feature.

4. Results
4.1. Dataset preparation

We employ two datasets for validation. One is the phantom dataset
and the other is the real surgery dataset. These two data sets were
created by our laboratory. These sequences are representative image
sequences in the surgical navigation stage. All experiments are con-
ducted on a workstation with 1 NVIDIA RTX2080ti, with 8 GB memory.
Our method is based on COLMAP [35] framework and is implemented
using C++ and OpenCV [15].

Phantom dataset. The phantom dataset consists of 4 videos. The
phantom data were collected from the carcass of a pig. The average
number of images contained in each video is 5200. The content in the
phantom picture is mainly the large intestine and rectum. These images
mainly simulate the different conditions, including the anatomic struc-
tures such as the fat, walls, and folds in the intestine. A sequence can be
divided into different small segments to verify different situations.

Real surgery dataset. The real dataset consists of 2 videos from
ERCP (Endoscopic Retrograde Cholangiopancreatography). Each video
in our own dataset contains 190-210 images. These images mainly
include the appearance of the duodenal papilla.

4.2. Contour extraction

We use the traditional method [38] as the baseline, and collect the
number of main contours and the number of points contained in each
contour as indicators. All results are shown in Table 1. We can find that
our method extracted more feature keypoints and longer contours, as
shown in the second column. The qualitative results are illustrated in
Fig. 3. It can maintain the accuracy and completeness of the contours
and avoid incorrect extraction by filtering out small contours such as
highlights. As shown in Table 2, we found that using the length of the
contour used as an indicator to select the main contours can improve the
matching accuracy (increase by 7.3%) and reduce the impact of the
highlight (only account for 0.01%). The matching accuracy is calculated
by the number of correct contour matching pairs divided by the number
of all contour matching pairs. The highlight factor means the number of
matching errors caused by highlights divided by the total matching error
pairs.

4.3. Feature matching performance with contours

Fig. 4 qualitatively shows the performance of our contour keypoints
and descriptors in the task of pair-wise feature matching. The subfigures
are endoscopic pictures obtained at different times. The contour shapes
and positions in the endoscope image are different, but our method can
find the similar contour in most cases, regardless of whether the inner
wall of the intestine is regular or irregular. In order to show the
matching relationship clearly, we draw partial contours in each

11
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subfigure. According to the results in Table 3, the average number of
point-to-point correspondences (average contour matches) using dense
contour points is 130-330. Average contour matches are calculated by
M/P, M presents the total point-wise matches and P is the number of
total image pairs. We utilize this metric to show the improvement of our
method in point-to-point matching performance. We use the normalized
cross-correlation method as the baseline. The accuracy of our contour
feature matching is shown in Table 4. Our method can effectively filter
out contours that match incorrectly. Our method increases the number
of matches and permits the images containing the same soft tissue
contour to inter-connect more closely. This description can reflect the
local relationship, which makes local matching and local reconstruction
more robust.

The comparison between SIFT feature matching and contour feature
matching is shown in Fig. 5. The images in (a) and (b) are from the
phantom dataset. (c) and (d) are images obtained in real surgery. The
SIFT feature used before has a large number of highlight points (white
points in Fig. 5 (a) and (c)). Our feature matching is mainly based on
contours, which can effectively find the soft tissue structure in the
endoscope. The use of contour features can restore a large number of
real 3D points with actual semantics. In Fig. 5 (b), our method can
recognize specific structural contours. As shown in Fig. 5 (d), our
method emphasizes the contours of the intestinal cavity. Fig. 6 illus-
trates the comprehensive use of global contour shape features and color
appearance features. The subfigures in Fig. 6 (a) are the results only
depending on the global shape descriptor. The subfigures in Fig. 6 (b) are
the improved results. Using color features can significantly improve the
accuracy of feature matching and effectively distinguish contours with
similar shapes. This is also consistent with the experience of using the
observation from eyes to distinguish digestive endoscopy images.

4.4. Pose estimation with semantic feature matching

Fig. 7 shows two specific examples of the accuracy comparision of
semantic features, contour features, and SIFT features. The measure-
ment to evaluate the estimated homography matrix is reprojection error.
The reprojection error is a geometric error between a projected point
and a measured one. In Fig. 7, green points are SIFT points and other
points are the re-projection matching points. It can be seen that each pair
of green and other points in the first column are evenly distributed and
closed. And the outline of the second column is basically coincident.
When SIFT points are used alone, the distance between blue points and
green points is far, which indicates that the estimated pose is incorrect.
The semantic features improved the accuracy of the pose estimation. By
using semantic features, we could increase the accuracy of pose esti-
mation by about 5%-25%, as shown in Table 5. Some specific examples
of reprojection errors are shown in Table 6.

4.5. SfM performance with semantic feature description

We compared the sparse and dense reconstruction using our pro-
posed semantic descriptor with COLMAP [12,35]. We use the number of
registered views (Registered ratio) and the number of sparse recon-
struction points (SR points) to evaluate the performance of our method
in the task of SfM in endoscopy. Our method has the following two
advantages. The first advantage is that our method can obtain more 3D
points. Table 7 shows the performance comparison in two datasets. The
number of 3D points restored by our method is 90.2% higher than [35]
in Seq.6.

In SfM tasks, the numbers of point clouds are larger using our
method. Our method increases the number of 3D points, reconstructs
more details, reduces the number of outliers, and makes the restored 3D
structure clearer, as shown in Fig. 8 (b) and (d). Fig. 9 qualitatively
shows the comparison results of dense reconstruction. The result shown
in Fig. 9 (c) using [12] contains many outliers.

The second advantage is that our method can successfully initialize
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and recover the 3D points on the contour when the SIFT feature
initialization fails, as shown in Seq.4 in Table 7. We analyze the scene
graph based on SIFT feature matching and contour feature matching on
small data sets, as shown in Fig. 10. As shown in the scene graph, the
nodes in the figure represent the image, and the connecting lines be-
tween nodes represent the existence of feature matching. The scene with
contour matching is shown in Fig. 10 (b). The red line indicates that
contour matching is added between two nodes, and the bold red line
indicates that feature matching has not occurred in SIFT feature
matching. Through analysis, it can be found that although these 15
images are the same scene, most of the points extracted by SIFT are noise
points, which can not exist stably. In addition, the number of SIFT
feature matching is also unbalanced, ranging from hundreds to tens,
which can not meet the initialization conditions. Our method can in-
crease the number of feature matching, and these feature points can
exist stably. Moreover, the 3D points restored by these feature matching
are less affected by the change of light. When the matching number of
contour features provided by our method meets the initialization con-
ditions, the reconstruction could depend on the contour, otherwise, the
reconstruction still depends on the combination of SIFT and contour
features.

4.6. Data improvement for DenseDescriptorNet training

Theoretically, the ground truth determines the performance of the
network. Therefore, we take the improved reconstructed point clouds as
the input of the pipeline. As shown in Table 8, our method has more
valid points for deep learning, compared with the original feature
matching results. In the best case, valid points are increased by 160% as
shown in Seg.6. The reason is that our contour matching can provide
better pose and matching information. In other cases, it increased on
average 35.31%. In order to show the visual effect of our improved
method, we selected some frames in the video. Fig. 11 shows the dense
matching results from the learning-based method.

4.7. Limitations

The framework we propose can generate more reconstructed points,
estimate more accurate poses, and provide better true values for deep
learning. But it is not without limitations. At present, the contour
extraction relies on traditional methods, because the rapid movement of
the camera may lead to image blurring, resulting in the originally
extracted matches being screened out. Fortunately, in practice, surgeons
also need to repeatedly confirm and observe the key area that needs to
be reconstructed, and the system can continue to extract contours.

5. Conclusion and future work

In this paper, we have combined SIFT feature and dense point feature
into a new semantic feature description solely based on the scene graph.
We evaluated our SfM system on the endoscope dataset, and several
advantages are highlighted. Firstly, our semantic feature description
improves the effect of feature matching. Secondly, the application of
semantic feature description to SfM improves the accuracy of pose
estimation and increases the density of point clouds. Moreover, our
method provides better results and promotes the development of
learning-based methods. Nevertheless, our method is not without limits.
Due to noise and image blurring, the contour extraction may be
incomplete and the matching error may increase.

Several research topics are still ongoing, since the current SfM
application is offline, it could not support real-time mapping and
localization yet. We plan to transfer this work into the existing simul-
taneous localization and mapping (SLAM) system to make it more
effective and robust in real-time endoscopic surgery navigation. As a
valuable case study, we expect this method could improve the surgical
scene reconstruction in practice. We plan to conduct animal experiments
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on pig carcasses and verify the effectiveness of our method.
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