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A B S T R A C T

Background and objective: Depth estimation has very broad potential in medical image analysis and is
important for applications such as augmented reality surgical navigation and preoperative planning. Compared
with segmentation tasks that can obtain ground truth through manual annotation, it is difficult to obtain a
large number of real values for depth estimation tasks that are limited by hardware conditions in endoscopic
environments.
Methods: To address the challenge, we propose a novel framework that utilizes segmentation tasks to
improve encoder performance in a self-supervised depth estimation network. For the first time, we leverage
the Contrastive Language-Image Pre-training (CLIP) method to improve the performance of endoscopy
segmentation models. Depth estimation networks can also benefit from this training process indirectly. In
addition, we design a semantic-guidance loss function to improve the performance.
Results: Our proposed method is systematically evaluated on three datasets. Experiments have verified that
the proposed framework can assist the network model in obtaining smaller errors. Compared with other state-
of-the-art methods, our framework obtains 0.081 and 0.097 on absolute relative error metrics in quantitative
evaluations on SCARED and SERV-CT datasets respectively. In qualitative experiments on real surgery datasets,
our proposed method also shows more ideal results.
Conclusion: The experiments in this study illustrate that our proposed method can alleviate the problem
of difficulty in improving network performance due to the lack of real values of depth data. The visual
performance of our approach illustrates the application potential in the clinic. Our method helps doctors obtain
depth perception and visual cues simultaneously, thereby reducing the difficulty of surgery and the pain of
patients.
1. Introduction

Minimally invasive endoscopic surgery has been widely used in
recent years due to less bleeding and shorter recovery period compared
to open surgery. However, due to the narrow field of view and lack of
depth perception, endoscopic surgery places stringent demands on sur-
geons’ experience and skills. Nowadays, with the rapid development of
virtual reality (VR) or augmented reality (AR) technology, an increasing
number of researchers choose AR-based surgical navigation to address
these difficulties. For the current AR-based surgical navigation, most
work focuses on a single task during the procedure. But laparoscopic
surgeries lasting several hours, surgeons need more guidance to interact

∗ Corresponding authors.
E-mail addresses: pan_junjun@buaa.edu.cn (J. Pan), daij@pcl.ac.cn (J. Dai).

with the navigation system more efficiently and comfortably. Multi-
task navigation systems [1,2] utilizing multi-task learning method [3]
to provide multiple auxiliary information are urgently needed but
relatively rare at present. In multiple tasks of AR surgical navigation,
depth estimation, and semantic segmentation play a very crucial role.
Moreover, surgical robotics, surgical planning assistance, and instru-
ment recognition can benefit from the results of depth estimation and
semantic segmentation.

Deep learning-based methods in depth estimation and semantic seg-
mentation tasks have grown rapidly in recent years. This is attributed
to the acquisition and distribution of large-scale datasets. In endoscopic
environments, semantic segmentation tasks can obtain true values by
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manually labeling key images. However, the ground truth of depth esti-
mation in the endoscopic environment is difficult to collect. Acquiring
the ground truth of depth inside the human body has extremely high
requirements on hardware, which are rarely reported in the literature.
Most of the existing published datasets with high quality are collected
on pig cadavers or in vitro organs. The inability to obtain large-scale
depth truth values is the first challenge. The second challenge is that
the in vivo environment of each patient has specific lesions. Such
idiosyncratic lesions cannot be reflected in the dataset in time. We
hardly obtain data captured from the human body, and there is still
a gap between animal and human experiments.

The purpose of the depth estimation task in endoscopic scenes is to
estimate the distance between the soft tissue surface and the camera
lens. The goal of the segmentation task is to annotate the tissue and
location of the lesion pixel by pixel based on the captured image.
Fortunately, depth estimation and semantic segmentation tasks belong
to the dense prediction task and both take images as input. There is a
strong connection between these two tasks, for example, most networks
follow the encoder–decoder structure. On the one hand, the estimated
depth image can be applied to anatomical location recognition [4]. On
the other hand, semantic segmentation can improve the accuracy of
depth estimation explicitly or implicitly. Currently, most work focuses
on the design of decoders [5,6]. Some works have confirmed that the
performance of the encoder responsible for feature extraction can bring
greater improvements to downstream tasks [7,8].

To address the above challenges, we propose a self-supervised multi-
task learning framework to improve the performance of the depth esti-
mation network indirectly through a segmentation task, which makes
it easy to obtain the true value. The depth estimation and segmentation
task share the weight of the image encoder. In the absence of large-scale
datasets with ground-truth values, the performance of depth estimation
methods is also improved using knowledge distilled from segmentation
tasks. For the first time, we apply the Contrastive Language-Image
Pre-training (CLIP) method to the semantic segmentation task in en-
doscopy. The segmentation network takes the corresponding exami-
nation image and word prompts as input. Our framework leverages
a large number of patient-specific data in the clinical. In addition,
we generate 3D annotations based on the results of deep estimation
and semantic segmentation. The 3D annotations assist the surgeons
with the location of vital organs. In addition, these annotations can
provide the surgeon with depth perception and prevent instrument mis-
touching. The reconstruction of surgical scenes with segmentation can
be employed for postoperative review, intra-operative planning, and
surgeon training.

Our contributions are as follows:

• We propose a framework that combines the endoscopic depth
estimation task with semantic segmentation by improving the
performance of the image encoder. The generalization ability of
the encoder benefits from the training process of segmentation.

• We introduce the contrastive language-image pre-training (CLIP)
training strategy into the field of endoscopic image segmentation
for the first time, fully utilizing the correspondence between
surgeons’ text diagnosis and case images, thereby benefiting from
broader supervision.

• We design a novel loss function that performs domain smooth-
ing for different physiological structures based on the semantic
segmentation mask to improve accuracy. This comes from our
observation that areas belonging to the same organ generally have
consistent depths.

2. Related work

In this section, we review the relevant work on depth estimation,
semantic segmentation, multi-task learning, and prompt learning that
2

are closely related to our work.
2.1. Depth estimation

With the release of datasets on natural scenes providing a large
number of ground truths, depth estimation methods based on deep
learning have been rapidly developed. However, due to the limita-
tions of hardware equipment and surgical specifications, the number
of endoscopic datasets with ground truth is very small. Facing the
challenge of lack of real values, existing mainstream methods start from
two angles. Some authors use generative networks to generate pseudo-
real values and perform a transformation [9,10]. However, the gap
between virtual data and real data in this kind of network is difficult
to overcome. Some researchers focus on using unsupervised methods
to solve this problem. Godard et al. [11] use the left and right pictures
as constraints to train the convolutional network to obtain consistent
3D information. Zhou et al. [12] utilize the similarity between adjacent
images in the image sequence as supervision to train the network. This
core idea has been adopted by most subsequent methods because of
its effectiveness [7,13]. Turan et al. [14] firstly apply this method to
the endoscopic depth estimation task. The network follows encoder–
decoder architecture and utilizes the ResNet as the encoder. [7]. Recent
work has improved on illumination changes and low accuracy in the
endoscopic environment, such as increasing reliance on structure from
motion (SfM) [15], reducing the impact of reflection through affine
transformation [16], using optical flow to perform photometric cor-
rection [17], and add long short term memory (LSTM) module to the
network structure to improve the pose network [18]. Shao et al. [17]
train the optical flow network and an appearance flow network to
calibrate the rotation, translation, and illumination changes. Existing
methods mainly improve model performance by changing the network
structure or adding modules and are still limited by the quality of
the dataset. Our framework addresses the problem of lack of ground
truth data from another perspective. We utilize segmentation networks,
which have easier access to data, to drive the performance of depth
estimation tasks based on the similarity between these networks.

2.2. Semantic segmentation

In the endoscopic environment, the results of depth estimation can
promote some semantic tasks, such as polyp detection, segmentation,
and tracking. Itoh et al. [19] propose a method to improve the ac-
curacy of polyp classification by using depth estimation information
and conducting quantitative and qualitative evaluation through differ-
ent types of polyps. Jonmohamadi et al. [20] present the first knee
arthroscope 3D semantic mapping system. The segmentation network
and the depth estimation network are separated, and the segmentation
results are directly mapped to the depth estimation. Celik et al. [21] use
an unsupervised adaptive technology, which can further improve the
performance of gastrointestinal polyps. Transunet [22] is proposed to
enhance details by combining the advantages of both transformer [23]
and U-Net [24]. To summarize, the semantic segmentation network
has been further developed by the massive release of datasets and
improvements in the network. Different from existing methods, we
try to use medical text annotation information and visual informa-
tion together as supervisory information, which takes advantage of
multi-modal features in our proposed framework.

2.3. Multi-task training

Currently, most work focuses on the design of decoders for multi-
task training. Klingner et al. [5] present a method that predicts dynamic
objects through a segmentation mask and uses them to guide the depth
estimation network to solve the problem of inconsistent lighting in
dynamic environments. Jung et al. [6] utilize the transformer block
to interact between two network branches. However, it is confirmed
that the performance of the encoder responsible for feature extraction

can bring greater improvements to downstream tasks. Psychogyios
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Fig. 1. The pipeline of our proposed framework. We utilize the structural similarity between depth estimation networks and semantic segmentation models to solve the problem
of difficulty in obtaining ground truth for depth estimation tasks through semantic segmentation pretraining.
et al. [25] propose a learning framework for joint disparity estimation
and device segmentation. Mahjourian et al. [26] and Huang et al. [27]
leverage 3D point cloud alignment loss to establish geometry consis-
tency between adjacent frames. For multi-task learning methods, the
combination of depth information and segmentation information is
mostly used to solve the impact of moving objects such as surgical
instruments. In our proposed method, the segmentation task is used
to improve the performance of the encoder, which can overcome the
challenge of limited data.

2.4. Prompt learning

Contrastive Language-Image Pre-training (CLIP) models have made
great strides in learning with fewer samples. Radford et al. [28] firstly
convert a pre-training task into a text and picture correspondence
problem, thus breaking the object class restriction. CLIP shows bet-
ter generalizability for downstream tasks and datasets with a wider
range of supervised sources [29]. Zhou et al. [30] present the Con-
text Optimization (CoOp) method for word adjustment, which uses
learnable vectors to model contextual words for cues and achieves
better generalization ability. Rao et al. [29] apply the knowledge from
CLIP pre-training to dense prediction tasks such as semantic segmen-
tation, object detection, and instance segmentation through a novel
framework. Our framework utilizes the CLIP model to improve the
performance of endoscopic segmentation based on the correspondence
between diagnostic text and endoscopic images, thus indirectly increas-
ing the accuracy of predicted depth. The proposed method validates the
applicability of the CLIP strategy on endoscopic images.

3. Method

In this section, we first describe the two-stage training framework.
Then, each module in the pipeline and the corresponding network are
introduced. The proposed semantic-aware smooth loss function is illus-
trated below. Finally, we provide training strategy and implementation
details.
3

3.1. Framework

We propose a two-stage training framework that can improve the
performance of a depth estimation task by pre-training on a semantic
segmentation network. Most of the works follow the encoder–decoder
architecture. It is common to utilize the convolutional network as
the image encoder for feature extraction. Some work has shown that
encoder improvements can affect the performance of depth estima-
tion networks [7,8]. Utilizing the structural similarity between depth
estimation networks and semantic segmentation models, we present
a self-supervised framework to deal with the lack of ground truth in
endoscopy. Inspired by the state-of-the-art methods, we leverage the
DenseCLIP [29] network to get comparatively better performance in
semantic segmentation. In addition, a semantic guidance smoothness
loss is designed. Therefore, we use semantic information to improve
the results of depth estimation.

The framework is shown in Fig. 1. In the first stage, our network
is trained on endoscopic images in a supervised manner from a pre-
trained weight. We use prompts and pictures as the input and fed
them into the segmentation network. The loss between the model’s
output and the manually annotated ground truth is calculated. The
performance of medical endoscopy image segmentation is improved by
the text diagnosis. In the second stage, the depth estimation network
(DepthNet) takes a single endoscopic image as the input to generate
corresponding depth information. The image encoders in DepthNet and
the segmentation network share the weights. Adjacent endoscopic im-
ages are fed into the pose estimation network (PoseNet). Then PoseNet
generates the pose matrix between the two images. The estimated pose
and depth are combined with the camera’s internal parameters and re-
projected back onto the plane to generate a reconstructed image. In
this way, the depth network and the pose network can be implicitly
constrained based on the similarity between the reconstructed image
and the original image. In particular, we use the encoder trained by
the segmentation tasks as the initial value for the depth estimation net-
work. The pose network and depth network are trained by photometric
loss and smoothness loss simultaneously in a self-supervised manner. In
addition, we utilize the segmentation mask as a condition to improve
the performance of the depth estimation network. We introduce the
methods utilized in these two stages below. According to the depth map
and the segmentation mask, the 3D annotation with different colors is
reconstructed.
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3.2. Language prompt learning for segmentation

The CLIP model is originally applied to classification problems
mainly by matching text and images to benefit from wider and richer
data supervision. DenseCLIP [29] is the first method that employs the
CLIP model for dense estimation tasks such as segmentation and detec-
tion. In stage one, the entire model includes a text encoder, an image
encoder, a Transformer and a segmentation decoder. Among them, the
text encoder, image encoder, and image decoder are all existing models
and minor adjustments have been made to them. The core idea of the
entire method is to match the pixels of the image with the text. Multi-
head self-attention [23] in Transformer is utilized to the feature map of
the image encoder to obtain language-compatible features. The product
of image features and text features is used as a score map of similarity.
This similarity score is passed to the decoder as a low-resolution feature
cascaded with the features of the original encoder. The score map also
represents a low-resolution result supervised through the segmentation
task. In our framework, we use the names of some soft tissue structures
as prompts. The prompts and endoscopic images are paired and fed into
the model together to perform the segmentation task of specific soft
tissue structures. The text encoder generates the text features and the
image encoder obtains visual features. The similarity of text features
and visual features enhances the information and is transferred to the
decoder. An image encoder suitable for endoscopic images is obtained.
Segmentation of soft tissue requires certain professional knowledge.
Therefore, we utilize the strategy that combines a few annotations and
a supervised learning network to generate pseudo labels. Specifically,
we create pseudo labels through manual annotation and the existing
network (U-Net [24]). Finally, we manually check all pseudo labels.
The dimensions of the network are changed according to the labeled
categories.

3.3. Semantic-guidance self-supervised depth estimation

DepthNet, PoseNet and brightness calibration module are included
in stage two. DepthNet contains an image encoder and a depth de-
coder. The design of the DepthNet and PoseNet is the same as Mon-
odepth2 [7]. The brightness calibration module is the pre-trained net-
work presented in [31], including an appearance flow network and
an optical flow network. We define the self-supervised depth estima-
tion problem as minimizing the image reconstruction loss function
between the target image and the re-projected image [12,7]. The image
reconstruction loss is composed of the photometric loss (𝑝) and edge-
aware loss. The photometric loss (𝑝) minimizes the image similarity
function () among two images with a visibility mask [31,7]. The use of
photometric loss functions in endoscopic picture reconstruction prob-
lems may accumulate errors. The movement of cameras and reflections
from smooth surfaces of soft tissue violate the photometric invariance
assumption. Thus, the brightness calibration is applied to supplement
the illumination.

The source image is defined as 𝐈†. The reconstructed image (𝐈̃) is
defined as follows:

𝐈̃ = 𝜋(𝐈†,𝐓,𝐃,𝐏), (1)

where 𝐓 is the pose estimation, 𝐏 represents the camera intrinsics, 𝐃 is
the predicted depth and re-projected function (𝜋). After the brightness
calibration, the modified image (𝐈̂) is as follows:

𝐈̂ = 𝐈 + 𝐂, (2)

where 𝐂 is the output of the pre-trained appearance flow network.
The image similarity () between the modified image (𝐈̂) and the
reconstructed image (𝐈̃) is calculated as follows:

 = 𝛽 ⋅
1 − SSIM(𝐈̂, 𝐈̃)

2
+ (1 − 𝛽) ⋅ ||

|

𝐈̂ − 𝐈̃||
|

, (3)

where SSIM is the structural similarity index [32] and 𝛽 = 0.85 [17,33].
4

e also use the edge-aware loss following [17,12].
To emphasize consistency and smoothness within the same semantic
ask, our semantic-guidance smooth loss (𝑠) is defined as:

𝑠 = 𝐌(|𝜕𝑥𝑑|𝑒−|𝜕𝑥𝐈| + |𝜕𝑦𝑑|𝑒
−|𝜕𝑦𝐈|), (4)

here 𝑑 represents the mean-normalized inverse depth of 𝐈 and 𝐌 is
he mask provided from the first stage. 𝜕𝑑 and 𝜕𝐈 are the gradients of
isparity and image, respectively.

.4. Surface reconstruction and annotation display

The segmentation results are combined with point clouds generated
y the depth estimation network to form 3D annotations. 3D anno-
ations show some physiological structures through different colors,
uch as the abdominal wall, liver and kidney, etc. 3D annotations can
rovide depth information more intuitively, and also relieve surgeons’
isual fatigue. 3D surface reconstruction and annotation display can
e completed together through our method. Firstly, masks of differ-
nt colors are generated based on the segmentation results. We then
verlay the semi-transparent masks onto the corresponding original
ndoscopic image. Finally, the point cloud with a specific color mask
an be recovered using camera intrinsics and depth estimates to dis-
lay the geometric structure. The truncated signed distance function
TSDF) [34] is applied to fuse multiple point clouds to extend the
D model of the tissue surface. The implementation is developed by
pen3d [35] according to [13].

. Experiments

.1. Experiment setup

We utilize the SCARED [36] dataset and SERV-CT [37] dataset to
valuate our methods’ performance. The SCARED dataset contains 9
ifferent sub-datasets collected from porcine cadavers and the SERV-CT
ataset includes 16 image pairs and CT. We can evaluate the perfor-
ance depth estimation methods using these datasets. Following [38,
1], 20,664 and 2991 images are used for training and validation,
espectively. And 517 images are utilized for evaluation. The input
ictures are uniformly scaled to the size of 320 × 256 and are col-
ected from fresh porcine cadaver abdominal anatomy. To validate
he generalization performance of the model, we test it on the la-
aroscopic dataset. Our laparoscopic dataset is collected under the
uidance of doctors and complies with data privacy regulations and
thical standards. This dataset contains videos taken by laparoscopes
ithout ground truth. The test data is not involved in the training stage.
he model is not fine-tuned on the test dataset. For evaluation, follow-

ng [7,31], we compute the five standard metrics: Abs Rel (absolute
elative error), Sq Rel (square relative error), RMSE (root mean square
rror), RMSE log (root mean square logarithmic error), 𝛿. These metrics
re defined as follows:

bs Rel = 1
|𝐃|

∑

𝑑∈𝐃
|𝑑∗ − 𝑑|∕𝑑∗ (5)

q Rel = 1
|𝐃|

∑

𝑑∈𝐃
|𝑑∗ − 𝑑|2∕𝑑∗ (6)

RMSE log =
√

1
|𝐃|

∑

𝑑∈𝐃
| log 𝑑∗ − log 𝑑|2 (7)

RMSE =
√

1
|𝐃|

∑

𝑑∈𝐃
|𝑑∗ − 𝑑|2, (8)

= 1
|𝐃|

|

|

|

|

|

{

𝑑 ∈ 𝐃|𝑚𝑎𝑥(𝑑
∗

𝑑
, 𝑑
𝑑∗

) < 1.25
}

|

|

|

|

|

× 100% (9)

where D is the set of the predicted depth. 𝑑 and 𝑑∗ denote the predicted
depth and the ground truth, respectively. In the first stage, the model
is trained with AdamW [39] optimizer. In the second stage, we train
the model with a minibatch of 12 for 30 epochs. Image augmentation is
applied during training, such as random horizontal flipping and random

color augmentation with the settings form.
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Table 1
DepthNet performance on SCARED dataset. ‘M’ means monocular dataset. ‘S’ means semantic dataset..

Method Backbone Strategy Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ 𝛿 ↑

Monodepth2 [7] Resnet50 M 0.086 0.811 14.751 0.107 0.952
Endo-SfM [16] Resnet50 M 0.084 0.672 6.102 0.103 0.959
AF-SfM [17] Resnet50 M 0.083 0.651 6.058 0.102 0.964
Ours Resnet50 M 0.081 0.647 6.016 0.103 0.957

SGD-Depth [5] Resnet50 M+S 0.089 1.007 7.312 0.112 0.941
FSRE [6] Resnet50 M+S 0.085 0.741 14.473 0.108 0.948
Ours Resnet50 M+S 0.081 0.625 5.941 0.102 0.961
Table 2
DepthNet performance on SERV-CT dataset. ‘M’ means monocular dataset. ‘S’ means semantic dataset..

Method Backbone Strategy Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ 𝛿 ↑

Monodepth2 [7] Resnet50 M 0.098 1.442 10.419 0.123 0.915
Endo-SfM [16] Resnet50 M 0.105 1.678 11.004 0.133 0.893
AF-SfM [17] Resnet50 M 0.104 1.675 11.374 0.133 0.900
SGD-Depth [5] Resnet50 M+S 0.123 1.988 12.123 0.156 0.847
FSRE [6] Resnet50 M+S 0.118 2.007 12.744 0.157 0.850
Ours Resnet50 M+S 0.097 1.305 10.043 0.123 0.920
4.2. Results

The performance of depth estimation is reported in this section,
regarding the prompt pretraining model and the ablation experiment
of semantic smoothness loss function. The performance of depth es-
timation on surgical laparoscopic images is also calculated. At the
same time, we also conduct qualitative analysis, mainly including depth
estimation, segmentation, and visualization results of point clouds. The
results of augmented reality applications are collected. The limitations
of our method are discussed.

4.2.1. Depth estimation
DepthNet network takes endoscopic images as input and predicts

the depth value corresponding to each pixel. We perform error statis-
tics between the predicted depth value and the ground truth. The
accuracy of depth estimation results is reported on various metrics.
Firstly, we evaluate the accuracy of our framework with three classic
self-supervised learning methods, including Monodepth2 [7], Endo-
SfM [16] and AF-SfM [17]. The pre-trained weights obtained from the
segmentation task are utilized. Secondly, our framework is compared
with the SoTA methods (FSRE [6] and SGD-Depth [5]) which also
use semantic estimation. Here, our method employs explicit semantic
guidance Loss. Existing segmentation tasks using CLIP do not provide
pre-trained weights for Resnet18. To be fair, we use Resnet50 as the
backbone for each method. In addition, other methods utilize weights
pre-trained on ImageNet as initial values. For the ablation study, the
performance of those models is collected according to different training
strategies.

Table 1 shows the quantitative results of the comparative methods.
The input for all comparison methods is 320 × 256 images. By analyz-
ing the results of the first 4 rows in Table 1, we verify that the proposed
encoder pre-trained using the segmentation method obtains more ideal
results. We also show the visualization results of depth estimation in
Fig. 3. Each column corresponds to a scene, which is the original image
and the depth obtained by different comparison methods. The results
obtained from Monodepth2 [7] are relatively low. We mainly analyze
the differences between AF-SfM [17] and our method. As shown in
Fig. 3(a) and (b), our method has better performance in terms of global
consistency compared with the state-of-the-art method. Our method can
obtain clearer depth results at the edges, as shown in Fig. 3(c) and (d).
This allows the depth estimation results to display more details. The
laparoscopic dataset does not include ground truth, so we only conduct
quantitative experiments. As shown in Fig. 4, our method achieves
smoother depth estimation results.

We also evaluate our method on the SERV-CT dataset in Table 2.
Fig. 2 displays the Abs Rel error distribution on the SERV-CT dataset.
5

Fig. 2. Boxplot of absolute relative error distribution on SERV-CT dataset for
Monodepth2, Endo-SfM, AF-SfM, FSRE, SGD-Depth and our method.

According to Fig. 2 and Table 2, our method also has lower mean
and median errors on this dataset. Compared with other methods, the
performance of AF-SfM is better because the photometric calibration
module could alleviate the impact of lighting changes. Our method
surpasses AF-SfM and achieves the smallest error on two datasets,
which may benefit from the improvement of encoder performance in
segmentation training. Other methods that use semantic information do
not have the desired performance, which may be due to the significant
difference between the endoscopic and natural scenes.

4.2.2. Ablation study
We verify the effectiveness of the proposed method through ablation

experiments. Table 3 reports the experimental results using different
pre-trained model weights and loss functions on the basic network
structure. We still use the five metrics (Abs Rel, Sq Rel, RMSE, RMSE
log, and 𝛿) to reflect the performance of the method. The baseline
uses the pre-trained model of ImageNet. In the header of Table 3,
‘CLIP-Pretrain’ represents that the CLIP-based pre-trained model weight
is used. ‘CLIP-Seg Pretrain’ means we utilize the CLIP strategy to
train the segmentation network. And ‘𝐿𝑠’ indicates that the semantic
segmentation loss function is used in the training stage. The difference
between the second and the fourth row is that the second one utilizes
the original CLIP model, while the fourth row employs the weight
obtained from endoscopy segmentation.
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Fig. 3. Visualization results of depth estimation networks on SCARED dataset. (a), (b), (c), and (d) are four respective images and the predicted depth obtained from other SoTA
methods and our framework.
Fig. 4. Visualization results of depth estimation on laparoscopic images. (a), (b), (c), and (d) are four respective images and the predicted depth obtained from other SoTA methods
and our framework.
Table 3
DepthNet ablation.

Method Pretrain 𝐿𝑠 Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ 𝛿 ↑

Baseline 0.083 0.651 6.058 0.102 0.964
With CLIP Pretrain ✓ 0.087 0.759 6.518 0.110 0.948
With CLIP Pretrain and 𝐿𝑠 ✓ ✓ 0.085 0.729 6.371 0.109 0.948
With CLIP-Seg Pretrain ✓ 0.081 0.647 6.016 0.103 0.957
With 𝐿𝑠 and CLIP-Seg Pretrain ✓ ✓ 0.081 0.625 5.941 0.102 0.961
6
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Fig. 5. Visualization results of depth estimation, semantic segmentation masks, and point clouds with annotations. (a), (b), (c), and (d) show the process of generating four point
clouds with different color annotations.
By comparing the results of the first and second rows, we find
that directly using CLIP’s pre-trained model does not directly improve
performance. On the contrary, all metrics have declined to a certain
extent. The data set sources of the CLIP model are mostly natural
scenes and this could result in a significant decrease in performance. By
comparing the results of the first and fourth rows, we verify that using
the segmentation-trained encoder for depth estimation improves the
performance of the model on most metrics. On this basis, our method
improves the accuracy of the model by explicitly using the semantic
guidance loss function.

4.2.3. Qualitative evaluation
In qualitative experiments, our experimental goal is to enhance the

position of the abdominal wall in the image with purple for display.
This goal has practical significance in surgery. During surgery, sur-
geons generally use instruments to manipulate organs. Displaying the
abdominal wall with another color could reduce accidental touching. In
addition, the abdominal cavity environment is similar, and large areas
with similar textures will cause visual fatigue for surgeons. By marking
the abdominal wall purple, we allow the surgeon to focus more on the
surgical area. Fig. 5 is a visual display of the intermediate results at
each stage of our method and the final point cloud augmented with
annotated information. Each column in Fig. 5 represents a scenario, and
each row represents the visualization results of different stages. The last
line shows the point cloud reconstructed from depth estimation results
after labeling the abdominal wall position with a purple label.

4.2.4. Augmented reality application
We propose a self-supervised learning framework that combines

depth estimation and semantic segmentation. An important application
of this multi-task learning framework is AR navigation. We perform
experiments on endoscopic images to demonstrate the potential of
7

our approach. Fig. 6 are two examples of effectively combining depth
estimation and segmentation results. Fig. 6(a) is a picture taken of the
kidney, and Fig. 6(b) is a picture taken of the liver. If we use traditional
annotation methods, we can only obtain 2D annotations, as shown in
the two pictures in the second column. 3D annotations with depth
information can be generated using a multi-task learning framework,
as shown in the last two columns of Fig. 6. Our visualization results
demonstrate that a multi-task framework could provide surgeons with
more informative interactions.

4.2.5. Discussion
Our framework improves the performance of depth estimation

methods with the help of segmentation tasks that easily obtain a large
number of ground-truth values. Existing methods have proven that
text and image comparison learning can significantly improve model
performance, allowing the network to benefit from more supervised
data. Based on the above implementation, our inspiration is to improve
the performance of segmentation methods by exploiting the corre-
spondences existing in cases during existing endoscopic inspections.
We believe that the proposed framework has the potential to achieve
greater improvements with the accumulation of matching data in real
medical settings. Our experiments also provide preliminary verification
of this.

Our proposed method can alleviate the dilemma of lack of ground-
truth values. Our experiments show that depth estimation performance
can be improved through segmentation annotation of endoscopic im-
ages. Using endoscopic images from the Vivo environment, the models
trained by our method can be more easily transferred and applied in
real surgeries. Because only images are used for input, there is no
change to the entire surgical process and it can be easily integrated
into existing surgical systems.

However, our approach is not without limitations. The proposed
framework is a two-stage model which may result in the accumulation
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Fig. 6. Visualization of AR applications using our proposed framework. (a) The kidney is marked in red. (b) The liver is labeled in green.
of errors. Furthermore, there is a time gap between the semantic
segmentation task and the depth estimation task while updating the
data. In the future, we will expand the data scale and build a standard
large-scale endoscopic data set. The complementary advantages of the
two tasks will be further utilized in designing a new network. We will
improve the model on a broader data set and evaluate it in animal
experiments.

5. Conclusion

To overcome the weakness of lack of ground truth, we propose
a self-supervised framework that leverages semantic information to
improve depth estimation performance. In addition, the correspon-
dence between text and pictures that naturally exists in medical cases
is regarded as a starting point to improve the performance of seg-
mentation tasks by using CLIP models. In this way, our framework
is expected to obtain a large number of human endoscopic images
based on existing case data and solve the problem of collecting ground
truth of depth estimation. It improves the generalization ability of the
model and reduces the gap between the experimental model and the
actual surgical environment. Finally, we present a semantically guided
smoothness loss function. Experiments confirm the effectiveness of our
method. Our method assists doctors in obtaining depth perception and
visual cues simultaneously and demonstrates the application potential
in the clinic.
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