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Self-Supervised Lightweight Depth Estimation in
Endoscopy Combining CNN and Transformer

Zhuoyue Yang , Junjun Pan , Ju Dai , Zhen Sun, and Yi Xiao

Abstract— In recent years, an increasing number of
medical engineering tasks, such as surgical navigation,
pre-operative registration, and surgical robotics, rely on
3D reconstruction techniques. Self-supervised depth esti-
mation has attracted interest in endoscopic scenarios
because it does not require ground truth. Most existing
methods depend on expanding the size of parameters to
improve their performance. There, designing a lightweight
self-supervised model that can obtain competitive results
is a hot topic. We propose a lightweight network with a
tight coupling of convolutional neural network (CNN) and
Transformer for depth estimation. Unlike other methods that
use CNN and Transformer to extract features separately
and then fuse them on the deepest layer, we utilize the
modules of CNN and Transformer to extract features at
different scales in the encoder. This hierarchical structure
leverages the advantages of CNN in texture perception
and Transformer in shape extraction. In the same scale of
feature extraction, the CNN is used to acquire local features
while the Transformer encodes global information. Finally,
we add multi-head attention modules to the pose network
to improve the accuracy of predicted poses. Experiments
demonstrate that our approach obtains comparable results
while effectively compressing the model parameters on two
datasets.

Index Terms— Depth and ego-motion estimation,
endoscopy, lightweight architecture, self-supervised
learning, transformer and CNN.

I. INTRODUCTION

ENDOSCOPIC minimally invasive surgery is widely used
because of less bleeding and shorter recovery time

compared with open surgery in recent years. However, due
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to the narrow field of view and lack of depth perception,
endoscopic surgeries place stringent demands on the expe-
rience and skills of the surgeon. Nowadays, with the rapid
development of VR/AR technology, an increasing number
of researchers are choosing AR-based surgical navigation to
address these difficulties [1], [2], [3]. These AR systems
superimpose preoperative data with intraoperative endoscopic
data through registration techniques [4], [5]. The accuracy
of video-CT registration algorithms primarily relies on the
quality of intraoperative reconstructions from endoscopic
videos [6]. In addition, there are many tasks, such as surgical
robots [7], medical image segmentation [8], surgery planning
assistance [9], and surgical instrument recognition [10], that
can benefit from the results of depth estimation.

Previous methods for depth estimation from image
sequences are based on multi-view geometry principles, such
as structure from motion (SfM) [11] and simultaneous local-
ization and mapping (SLAM) [12]. Although depth estimation
tasks have been developed in natural scenes for many years,
this problem is more difficult in endoscopic scenes due to
inconsistent lighting, sparse texture features, and soft tis-
sues with non-Lambertian reflection characteristics. Geometry-
based methods [13] rely heavily on feature extraction and
matching. The smooth and repetitive soft tissue texture usually
results in sparse features and wrong feature matching. Thus,
traditional methods still fall short of desirable performance.

Deep learning-based methods in harsh natural environments
for depth estimation [14], segmentation [8], and detection [15]
have rapidly developed due to the publication of large datasets.
However, it is very difficult to obtain large amounts of
data with ground truth in endoscopic scenes. Unsupervised
learning methods that only use visual images have gained
increasing attention in recent years. Researchers have tried
to relieve these limitations for endoscopy images by uti-
lizing self-supervised training strategy [6], [16], [17], [18].
Although many self-supervised methods have emerged, the
depth networks for most of the work are similar and based
on convolution layers. Some works design more complex and
heavy networks to achieve better results.

For navigation applications, depth estimation networks not
only need to ensure accuracy but also integrate with other
modules such as registration. An effective and lightweight net-
work structure is an important topic. Currently, there are many
advanced works analyzing existing network architectures and
making interesting discoveries. For example, the receptive field
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of convolution operation is limited, while Transformer [19]
can model global information. The latest work has found that
the most effective part of Transformer is the entire framework
rather than multi-head attention (MHA) operations [20]. CNN
exhibits strong texture bias, while Transformers exhibit strong
shape bias [21]. Based on the above findings, we propose
a lightweight self-supervised depth estimation network for
endoscopic images, which combines the advantages of CNN
and Transformer at a fine-grained level.

Our contributions are summarized as follows:
• For the first time, we apply the lightweight network to

endoscopic scenes. We present a novel hybrid architecture
with an efficient combination of CNN and Transformer
at different scales. In order to extract global and shape-
aware features, we insert Transformer layers into CNN
layers which are sensitive to local textures.

• We propose a pose network with several multi-head
attention modules. Attention modules are added at dif-
ferent locations in order to find a solution with better
generalization. We perform experiments on several long
sequences to verify the performance improvement of the
methods.

• Extensive experiments have demonstrated the effective-
ness of our proposed method, which compresses the
number of model parameters without a significant loss
of accuracy. Qualitative experiments demonstrate that our
method achieves comparable results with current state-of-
the-art methods on the SCARED and clinical datasets.

II. RELATED WORK

In this section, we review the unsupervised depth estima-
tion methods applied in endoscopic scenes, as well as the
state-of-the-art (SOTA) network framework combining CNN
(convolutional neural network) and Transformer applied in
natural scenes.

A. Self-Supervised Learning
Depth estimation methods in natural scenes have been stud-

ied for several years and typically leverage real depth values
as supervised signals to model the problem as a regression or
classification problem. However, true depth values are difficult
to obtain in an endoscopic environment. It is not until after
unsupervised methods are widely used [22], that those deep
learning methods are formally applied to endoscopic depth
estimation tasks. Zhou et al. [17] propose an unsupervised
training method using only monocular video sequences. The
method uses the computed depth and poses as mediators
and warps nearby views to the target view as supervised
information. Godard et al. [14] leverage binocular videos
instead of depth truth to train the fully convolutional network.

The first article [16] applies unsupervised depth estimation
to endoscopy. The authors use a fully convolutional depth
estimation approach with a similar structure to the method
in [17]. Godard et al. [23] propose the Monodepth2 on the
basis of [14]’s network framework. The predictor behind the
decoder in the depth estimation network and the decoder
in the pose estimation network is deleted. Most researchers

find that the structure in Monodepth2 [23] including a depth
network and a separate pose estimation network could achieve
better performance. Following [16] and [23], this structure
became the baseline for subsequent methods and the unsuper-
vised depth estimation is regarded as an image reconstruction
problem at present. To deal with edge conditions, such as
object motion and occlusion, predictive interpretable masks
are used. Liu et al. [24] propose a self-monitoring method to
train convolutional neural networks for intensive depth esti-
mation from monocular endoscopic data. Supervised signals
are derived from the positional and sparse point clouds of
the motion recovery structure. Recasens et al. [25] leverage
monodepth2 [23] in this work to train an endoscopic depth
estimation network to obtain the depth corresponding to each
image. Ozyoruk et al. [18] put forward EndoSfMLearner,
which is an unsupervised monocular depth and pose estima-
tion method. This method combines residual networks and a
spatial attention module to focus on highly textured tissue
areas. Li et al. [26] add the LSTM module in the pose
estimation network to model time information, thus improving
the accuracy of pose estimation. Shao et al. [6] joint use
optical flow appearance flow to deal with the brightness
inconsistency problem. Zhang et al. [27] propose a network
that shares an encoder and contains two branches in the
decoder. The two branches estimate the depth information
and normal information respectively. Currently, most of the
self-supervised deep networks applied to endoscopic images
are convolutional neural networks. Most researchers [28],
[29] focus on increasing model complexity and parameters
to improve the performance of the network.

B. Network Architectures
With the development of the technology, Transformer shows

great potential for depth estimation tasks in natural scenes.
Varma et al. [30] first evaluate the impact of transformer
on self-supervised monocular depth estimation. DPT [31]
directly uses the Transformer as the encoder, and then fuses
the results of each layer of the Transformer separately to
generate depth estimation results. AdaBins [32] uses ViT
after general encoders and decoders, and then adaptively
divides depth values based on the dynamic changes of the
scene. TransDepth [33] also adds Transformer blocks to the
ResNet [34] results to obtain long-distance information, then
uses a decoder based on attention and Gate to fuse features,
and finally performs depth estimation through prediction head.
Vision Adaptor [35] designs an adapter that runs in parallel
with ViT, incorporating prior knowledge of images into the
ViT backbone to provide reconstructed multi-scale features for
dense depth estimation problems, preserving the flexibility of
ViT and improving performance. DeepFormer [36] performs
ViT and convolution operations separately in the encoder stage
and designs a layered aggregation and interaction module to
combine the two parts. To summarize, some researchers build
independent Transformer-based encoders to obtain feature
maps or add several modules to fuse features from CNN.

MonoViT [37] is the current state-of-the-art work in natural
scene depth estimation tasks. The encoder of MonoViT [37] is
constructed by stacking several MPViT [38], and the decoder
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Fig. 1. Overview of the proposed method. Our method includes a depth network (DepthNet) and a pose network (PoseNet). Our DepthNet
consists of an encoder with a combination of CNN and Transformer and a decoder. Our PoseNet is enhanced by the multi-head attention modules.

is from HR-Depth [39]. Each layer of MPViT has three trans-
former heads and a convolution head. MonoFormer [21] still
relies on ViT [40], mainly by proposing the attention connec-
tion module and feature fusion decoder. Zhang et al. [41] pro-
pose a dilated convolutional module to extract rich multi-scale
local features and a self-attention-based feature interaction
module to encode remote global information into features.
Yu et al. [20] prove that the general architecture of the
Transformers, instead of the specific token mixer module,
is more essential to the model’s performance. CMT [42] inserts
Transformer structures between different convolutional layers
of CNN. The ablation experiments have shown that the widely
used phased design in CNN is a better choice for promoting
Transformer-based architectures. In summary, the integration
of CNN and Transformer in architecture has evolved from
coarse-grained stacking to fine-grained information exchange.
The difference between our method and the above methods
is that we stack the CNN layers and the Transformer layers
alternately. We utilize this hybrid structure to obtain local and
global features while also using textures and contours.

III. METHOD

A. Overall Architecture

The framework includes a depth estimation network (Depth-
Net), a pose estimation network (PoseNet), and a brightness
calibration network, as shown in Fig. 1. Endoscopic images
are segmented into groups of three in chronological order.
The DepthNet estimates the multi-scale depth map of a single
endoscopy image, while the PoseNet estimates the camera
motion between adjacent images. We combine convolutional
layers with transformer structures to build a hybrid DepthNet.

We use the brightness calibration module proposed in [6]
to compensate for lighting changes caused by endoscope
movement. Then, according to the predicted camera poses and
camera internal parameters, the estimated depth is re-projected
back to the two-dimensional plane, and the model is supervised
and optimized by calculating the loss between the recon-
structed image and the target image. The details of DepthNet
and PoseNet are described below. The utilized loss functions
are listed.

B. DepthNet

Following [14] and [23], we design our method as an
encoder-decoder architecture. CNN has better performance in
extracting local textures and Transformers are sensitive to
global information and contours [21]. We present a novel
hybrid encoder that is able to focus on both texture and contour
features. The first and third layers are stacked with multiple
layers of CNN modules, and then several Transformer blocks
are placed in sequence in the middle layer. Multi-scale features
from the encoder are connected into a concise decoder.

1) Depth Encoder: The input image is first passed through
a convolution stem, containing three 3 × 3 convolutions. The
first convolution with a stride of 2 and the next two with a
stride of 1. The output channel is C1, and the size of the output
feature map is H/2 × W/2. From the following stages, the
CNN-based layer and Transformer-based layer are alternately
stacked. Firstly, several symbols are defined to describe the
input and output of each stage. We use Fi to represent the
feature map output from the i-th layer. The image that has
been pooled in the i-th layer is labeled as Ii . The feature
obtained through downsampling modules for each layer is Di .
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Fig. 2. CNN and Transformer blocks that are adopted in the depth
encoder of DepthNet. (a) is the structure of the CNN block. (b) shows
the architecture of the Transformer blocks. To distinguish between two
different Transformer blocks, we name them based on the different
operations used in the framework.

Following [21] and [41], Fi−1, Di−1 and Ii are concate-
nated together and fed into the i-th layer. Inspired by [41],
in the CNN-based layer, local and long-range features are
extracted by stacking several dilated convolution blocks and
a Transformer block. In the second layer, Transformer-based
architecture is adopted to enhance shape information, resulting
in the depth feature with size H/8 × W/8 × C2. Then, the
aggregating features are fed into dilated convolution modules,
and depth maps of H/16 × W/16 × C3 are generated by the
Transformer block.

The encoder consists of three layers, each of which is
composed of multiple stacked blocks. We first introduce the
basic blocks used in the depth encoder, and then explain
the structures of the CNN-based layer and Transformer-based
layer. The dilated convolutions and Transformer [20], [41]
blocks are shown in Fig. 2. We first define the symbols used in
this paper for convenience. X denotes the input features. And
X̂ represent the output of the dilated convolution module. BN
is a batch normalization and LN is a layer normalization. MLP
is the abbreviation of a multi-layer perceptron. As shown in
Fig.2(a), X̂ is defined as follows:

X̂ = X + MLP(BN(DConv(X))), (1)

where DConv is the depth-wise dilated convolution operation
with the dilatation rate. We replace MLP with activation func-
tion (GELU) [43] in some blocks to reduce model parameters.
There are two types of Transformer blocks, as shown in
Fig.2(b). Ŷ is the output of the Transformer module and can
be computed as follows:

X̃ = MixToken(LN(X)) + X,

Ŷ = X̃ + MLP(LN(X̃)). (2)

Pooling [20] and cross-covariance attention [44] operations are
utilized as MixToken. As shown in Fig. 2(b), for the output
of cross-covariance attention block, Ŷ = X + MLP(LN(X̃)).

The Transformer-based layer is illustrated in Fig. 3. The
input of the Transformer layer is the concatenation of Fi−1,
Di−1, and Ii . We first perform a convolution to reduce the
dimensionality of the input. Then, two Transformer blocks

Fig. 3. Transformer-based layers that are adopted in the depth
encoder of DepthNet. Transformer blocks using different operations are
distinguished by different shades of yellow. The specific structure of each
type of block is shown in Fig. 2.

Fig. 4. PoseNet. Multi-head attention.

with a pooling operation and one Transformer block with
an attention block are used to extract shape-aware and long-
range features (F). Subsequently, we concatenate F, Di , and
Ii+1 together, and fed them into the stacked three Transformer
blocks again. The CNN-based layer consists of several convo-
lution blocks and one Transformer block, as shown in Fig. 1.
The number of CNN blocks in the third layer is twice the
number of CNN blocks in the first layer.

2) Depth Decoder: Our decoder adopts the concise and
effective U-Net [45] structure, in [23]. Convolution layers
and skip connections are employed in the decoder to receive
multi-scale features from the encoder. Then, cross-layer con-
nections and upsamples are used to increase the resolution.
Finally, three prediction heads output inverse depth maps at
different resolutions, according to the aggregated features.
Each prediction head consists of a convolution layer, a bilinear
upsample, and a sigmoid layer. All predicted multi-scale depth
maps participate in self-supervised learning optimization.

C. PoseNet
Most of the networks [46] utilize a pose estimation network

similar to monodepth2 [23], which takes two adjacent color
pictures as input and outputs the 6-DoF relative pose between
the pictures. PoseNet uses the pre-trained ResNet [34], i.e.
a structure with four superimposed convolutional layers, as an
encoder. Considering the influence of light in the medical
scene, we add multi-head attention modules [19] into the above
architecture to improve the performance of the pose estimation
network, as shown in Fig. 4.

Two adjacent images (H×W×3) are first fed into a convo-
lution stem to obtain a feature map F of size H/2 × W/2.
After passing through the maximum pooling layer, the output
(F̃) of multi-head attention can be defined as:

F̃ = MultiHeadAtten(Q, K, V) + F, (3)
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where MultiHeadAtten(Q, K, V) is the concatenated output of
k self-attention operations, which is applied as:

Attention(Q, K, V) = softmax(
QKT
√

d
)V, (4)

where Q, K, V are projected from F̃ and d is the dimension of
the input. Then, the feature extraction was performed through
two superimposed ResNet [34] blocks to obtain feature maps
with scales of H/4 × W/4 and H/8 × W/8, respectively.
In addition, the extracted feature map passes through the
multi-head attention layer again. Finally, the last two feature
maps are obtained through two basic blocks. The feature maps
are converted into pose matrices through convolutions.

D. Self-Supervised Learning

Like other unsupervised learning methods, we also trans-
form the task as 2D image reconstruction and supervise the
consistency and accuracy of depth estimation by minimizing
the similarity between the re-projected image and the target
image. The image reconstruction loss consists of the photomet-
ric loss (Lp) and edge-aware loss (Le). We define the source
image as I†. Utilizing the pose estimation T and intrinsic
parameters of the camera P, the reconstructed image (Ĩ) can
be re-projected (π) from the depth estimation D and I†. The
reconstructed image (Ĩ) is defined as follows:

Ĩ = π(I†, T, D, P). (5)

Due to inconsistent lighting in the endoscopic environment,
the photometric loss is inaccurate. We apply a pre-trained
optical flow network to calibrate the rotation and translation
changes between two input images and use a pre-trained
appearance flow network that results in C to supplement the
illumination. The modified image (Î) resulting from the target
image I is as follows:

Î = I + C. (6)

The image similarity (F) between the modified image (Î)
and the reconstructed image (Ĩ) is defined as follows:

F = α ·
1 − SSI M(Î, Ĩ)

2
+ (1 − α) ·

∣∣∣Î − Ĩ
∣∣∣ , (7)

where SSI M is the structural similarity index [47] and α =

0.85. The photometric loss Lp is the minimum value of F
among two adjacent images with the visibility mak [6], [23].
In order to maintain the edges, edge-aware loss is also used.
As in previous work [17] and [23], the edge-aware loss is
defined as:

Le = |∂x d|e−|∂x I|
+ |∂yd|e−|∂yI|, (8)

where d represents the mean-normalized inverse depth of I.

IV. DATASET AND RESULTS

A. Dataset

1) SCARED Dataset: We utilize SCARED [48] dataset to
evaluate our methods’ performance. The SCARED dataset is

published on the endoscopic sub-challenge organized by MIC-
CAI2019, containing 9 different sub-datasets collected from
porcine cadavers. Each sub-dataset contains an endoscope
video, the ground truth of the pose recorded by the surgical
robot, and the ground truth of depth collected by structured
light equipment. Therefore, we can evaluate the performance
of pose estimation and depth estimation methods using this
dataset. Following [6], we also refer to the Eigen-Zhou [17],
[49] evaluation protocol to separate the training, validation,
and test datasets, respectively.

2) Clinical Dataset: In order to verify the generalization
performance of the method, we also collect videos during right
hemicolectomy surgery with the assistance of surgeons. Four
representative video clips are selected for quantitative experi-
ments. Each video contains 150-200 images. The contents of
the images include live, colon, small intestine, fat, etc. in the
abdominal cavity. These four sequences are representative
image sequences during the surgical navigation phase. This
dataset is not utilized in the training process.

B. Implementation Details
Our method is implemented by PyTorch. In our experiments,

we utilize a single NVIDIA V100 and the batch size is 12. The
following training augmentations are performed, with 50%
chance: random brightness, contrast, saturation, and hue jitter
with respective ranges of ±0.2, ±0.2, ±0.2, and ±0.1. Our
depth estimation network and pose estimation network use
two AdamW [50] optimizers respectively. The initial values
of learning rates are 1e-4. Drop-path is used to mitigate
overfitting and the training epoch is set to 50. The specific
values of C1, C2 and C3 are 48, 80 and 128.

Following [6], [17], and [23], we compute the 5 standard
metrics (Abs Rel, Sq Rel, RMSE, RMSE log, δ < 1.25)
proposed in [49] for evaluation. These metrics are defined as
follows:

Abs Rel =
1

|D|

∑
d∈D

|d∗
−d|/d∗ (9)

Sq Rel =
1

|D|

∑
d∈D

|d∗
−d|

2/d∗ (10)

RM SE log =

√
1

|D|

∑
d∈D

| log d∗ − log d|2 (11)

RM SE =

√
1

|D|

∑
d∈D

|d∗−d|2, (12)

δ =
1

|D|

∣∣∣∣{d ∈ D|max(
d∗

d
,

d
d∗

< 1.25)

}∣∣∣∣ × 100%

(13)

where D is the set of the predicted depth. d and d∗ denote the
predicted depth and the ground truth, respectively. We perform
a 5-frame pose evaluation following [17] and adopt the metric
of absolute trajectory error (ATE) [51].

C. Depth Estimation
1) Performance Comparision: We run experiments on the

SCARED dataset to evaluate the depth error and accuracy of
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TABLE I
DEPTHNET PERFORMANCE. ‘ENCODER’, ‘DECODER’, AND ‘OVERALL’ REPRESENTS THE NUMBER OF PARAMETERS UTILIZED IN DEPTHNET.

AUXILIARY REPRESENTS THE NUMBER OF AUXILIARY MODELS’ PARAMETERS. †MEANS THE BEST RESULT WE REPRODUCE ON OUR MACHINE

Fig. 5. Qualitative depth comparison. There are four examples from the SCARED dataset. The first row is original images and the others are
depth maps. The second and third rows are results from [6] and [23]. The last row shows our results.

our model. The proposed method is compared with several
SOTA self-supervised methods, including AF-SfM [6], Endo-
SfM [18], Monodepth2 [23], Fang et al. [52], DeFeat-Net [53]
and SC-SfMLearner [54]. To make up the monocular scale
ambiguity, following the same strategies indicated in [6]
and [23], the estimated depth is scaled by the per-image
median ground truth. Table I collects the quantitative results
of our model against other typical self-supervised methods.
The encoder, decoder, and overall columns in Table I report
the size of parameters in the DepthNet. Our method achieves
comparable performance to the state-of-the-art methods with

the smallest parameters in the inference phase. We achieve
the second-highest ranking result in accuracy. In Table I, the
auxiliary parameters refer to the network parameters proposed
in AF-SfM [6] for correcting illumination. With these two
auxiliary networks only utilizing the training phase, both
our model and AF-SfM [6] can achieve better performance.
The performance of compared methods on depth estimation
is from [6]. According to Table I, our method achieves a
lower result on RMSE. Fig. 5 shows that our model obtains
satisfactory results compared with other methods. We can
observe that our method provides a more accurate depth
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TABLE II
ABLATION STUDY ON THE NUMBER OF TRANSFORMER

BLOCKS IN ONE LAYER

estimation of the edge of organs while maintaining the global
smoothness of soft tissues. These quantitative and qualitative
results demonstrate the superiority of our method.

2) Ablation Study on DepthNet Architecture: To further
demonstrate the validity of the proposed model, an ablation
study is conducted to assess the importance of different
designs in the architecture. We conduct experiments on the
number of Transformer blocks and the structure of Transform-
ers layers. The number of modules in a single layer determines
the foundation of the framework.

a) Ablation study on the number of transformer blocks:
Table II collects the results with different numbers of trans-
former blocks with pooling operation in the middle Trans-
former layer. The transformer block with attention remains
unchanged in each experiment. The baseline is a simplified
model in the second layer that does not replace CNN layers
with Transformer layers. We test the depth estimation results
of 2, 3, and 4 Transformer blocks. Based on the results of
the second and third rows, we find that adding a block with
pooing can improve the performance of the model. However,
based on the results of the third and fourth rows, we find
that consistently stacking pooling Transformer blocks result
in a decrease in performance. Therefore, we use the structure
in Fig. 3 to achieve stable performance improvement while
increasing pool formers through cascading and convolution
operations. Based on the results in the last row of Table I,
our current structure can strike a balance between the depth
estimation accuracy and the model size.

b) Ablation study on the architecture of transformer layers: The
influence of different architecture on accuracy has been stud-
ied. We compare the following three frameworks, as shown
in Fig. 6. These three subgraphs show the basic hybrid
structure, each consisting of 3, 4, and 5 layers. In both
Fig. 6(a) and Fig. 6(c), CNN-based layers are used as the first
and last layers. In both (b) and (c), there are two Transformer
layers in the architecture.

Table III shows the different results obtained by these
three structures. Both (a) and (c) achieve good performance,
which is comparable to the most advanced methods. However,
the model parameters of (a) are the smallest. So in the
performance analysis experiment, we report the results of (a).
However, the structure in (c) can achieve smaller errors on Sq
Rel, RMSE, and RMSE log metrics.

D. Pose Estimation
We select two sequences with longer trajectories [6] in

the SCARED dataset and label them as Sequence-1 (Seq.1)
and Sequence-2 (Seq.2) respectively. Table IV shows the

Fig. 6. CNN and Transformer architectures that can be adopted
in the depth encoder of DepthNet. (a), (b), and (c) are the hybrid
architecture with 3, 4 and 5 layers.

TABLE III
ABLATION STUDY ON TRANSFORMER AND CNN ARCHITECTURES

TABLE IV
POSE PERFORMANCE

comparison of the proposed method with the other five
methods. The performance of compared methods is from
AF-SfM [6]. Our method achieves the lowest error on the
ATE. Most of the work use the same pose estimation net-
work. We concatenate two input images and then estimate
the 6DoF between the two images using features extracted
by ResNet [34]. Feature-dependent approaches have higher
immunity against light variations. We add attention mecha-
nisms to enhance features, emphasize differences, and thus
improve performance.

To further analyze the effect of the multi-head attention
mechanism on the pose estimation network, we conduct
ablation experiments. Table V collects the results of adding
multiple attention mechanisms at different locations. These
insertion locations include the first layer of convolution, the
second layer of convolution, the third layer of convolution,
and various combinations of these locations. For the scheme,
after MHA is added to the first layer of convolution, we note
that while it achieves better results than Monodepth2 [23],
it is not as good as the combined use of appearance flow.
Interestingly for Sequence-1, we find that adding multi-head
attention in both the second and third layers achieves lower
errors. However, for Sequence-2, only the MHA in the second
layer yields a performance gain. Therefore, we use the addition
of the MHA mechanism in the middle layer to obtain better
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Fig. 7. Qualitative pose comparison. The first three columns are the trajectory results by using comparative methods( [6], [18], [23]). The results
in the last column are our trajectory results.

TABLE V
ABLATION STUDY ON POSENET

generalization. Fig. 7 reports qualitative examples from these
two trajectories. The performance of our model is superior to
other competitors in the middle of trajectories.

E. Surface Reconstruction
We can recover point clouds from camera intrinsics and

depth estimates, as shown in Fig. 8. The point cloud shown
in Fig. 8 does not have any added colors, in order to
display the geometric structure. We use truncated signed
distance function (TSDF) [55] to fuse multiple point clouds
in order to extend the 3D model of the tissue surface. The
implementation is developed by Open3d [56]. Readers can
reference [25] to get the procedure of expanding multiple point
clouds based on pose estimates. We further utilize laparo-
scopic images obtained from surgery for visual performance
analysis.

Fig. 9 shows the surface reconstructed from the SCARED
dataset. Subfigures in Fig. 10 are the surfaces recovered from
the clinical dataset. The images in the first row demonstrate the
texture and the second row shows the mesh. Through mesh,
we can more clearly see the structure of soft tissues in different
scenarios. By adding textures, the entire scene can be visually
reflected. Fig. 9 shows that our method preserves distinct tissue
structures and keeps local soft tissues smooth and continuous.
TableVI reflects our scenes containing a large number of verts.

Fig. 8. Point clouds on the SCARED and clinical datasets.
(a) (b) show two examples. Images in the first row are original images
and figures in the second row are reconstructed point clouds.

TABLE VI
SURFACE RECONSTRUCTION

The average number of points for surface models in the scared
dataset and the real dataset is 1.8 and 1.5 million, respectively.
The average processing time for each image is 0.2 seconds.
We do not include network inference time here. The inference
time of our method and other methods are shown in TableVII.
Our method also reduces inference time.
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Fig. 9. Our surface reconstructions on the SCARED dataset. (a), (b), (c) and (d) are 3D surfaces recovered from four images captured from
porcine cadavers.

Fig. 10. Recoverd surfaces on the clinical dataset.(a), (b), (c), and (d) are 3D surfaces recovered from four representative laparoscopic images
obtained during surgery, mainly including fat, intestines, and liver.

TABLE VII
DEPTHNET INFERENCE SPEED

F. Limitations

Although our method is mainly trained and tested on
laparoscopic images, we have also tested it in clinical exper-
iments. However, there are still some disadvantages to the
depth fusion, such as the presence of discrete points on
the edge of the fourth image in Fig. 9. In addition, for
dynamic scenarios, such as device movement and interaction
between devices and soft tissues, current fusion methods may
have a significant overlap (Fig. 11). The reason for this
phenomenon may be due to inconsistent depth estimates across

Fig. 11. The example of unsatisfactory reconstruction result. The
green box region shows the overlap.

multiple images. The problem of inconsistent depth between
different laparoscopic images still exists due to the similar
texture.
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V. CONCLUSION

A lightweight depth estimation network is first applied for
endoscopy images in this paper. We propose a self-supervised
depth estimation network with a combination of CNN and
Transformer for endoscopy images. CNN-based layers mixed
with transformer-based layers are utilized as the encoder
to aggregate local texture information and global contour
features. Our method achieves competitive results while also
reducing the number of parameters. The proposed pose net-
work obtains the minimum error on the SCARED dataset
compared to the previous approaches. Detailed quantitative
and qualitative experiments demonstrate the effectiveness of
our method.

However, there are still some issues that need to be
improved in the depth fusion task. The newest implicit scene
representation methods, such as NeRF [57], can be used to
solve the above challenge. In the future, we attempt to improve
the performance of networks in dynamic object scenarios,
such as surgical instruments and deformable tissues. Further
validation is needed to apply our method in actual surgical
scenarios. Animal studies with pigs will be done in the future.
Pigs’ gut environment and structure resemble those of humans.
We attempt to extend the method in this study for use in human
research after conducting animal tests.
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